(1)计算:8+(-1)3-2×22+(π-1)0.(2)先化简再求值:3x-3x2-1÷3xx+1-1x-1,其中x=2.-数学

题文

(1)计算:

8
+(-1)3-2×

2
2
+(π-1)0
(2)先化简再求值:
3x-3
x2-1
÷
3x
x+1
-
1
x-1
,其中x=2.
题型:解答题  难度:中档

答案

(1)原式=2

2
-1-

2
+1
=

2


(2)原式=
-1
x2-x

当x=2时,原式=-
1
2

据专家权威分析,试题“(1)计算:8+(-1)3-2×22+(π-1)0.(2)先化简再求值:3x-3x2-1÷3xx+1-1..”主要考查你对  零指数幂(负指数幂和指数为1),分式的加减乘除混合运算及分式的化简,算术平方根,实数的运算  等考点的理解。关于这些考点的“档案”如下:

零指数幂(负指数幂和指数为1)分式的加减乘除混合运算及分式的化简算术平方根实数的运算

考点名称:零指数幂(负指数幂和指数为1)

  • 零指数幂定义:任何不等于零的数的零次幂都等于1。
    负指数幂的定义:任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数。
    指数为1:任何不等于零的数的1次幂,所得结果都等于这个数的本身。

考点名称:分式的加减乘除混合运算及分式的化简

  • 分式的加减乘除混合运算:
    分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。

    分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

  • 分式的混合运算:
    在解答分式的乘除法混合运算时,注意两点,就可以了:
    注意运算的顺序:按照从左到右的顺序依次计算;
    注意分式乘除法法则的灵活应用。

考点名称:算术平方根

  • 概念:
    若一个正数x的平方等于a,即x2=a,则这个正数x为a的算术平方根。
    规定:0的算术平方根是0。
    表示:a的算术平方根记为,读作“根号a”。
    注:只有非负数有算术平方根,而且只有一个算术平方根。

  • 平方根和算术平方根的区别与联系:
    区别:
    (1)定义不同:如果一个数的平方等于a,则这个数叫做a的平方根;非负数a的非负平方根叫做a的算术平方根。
    (2)个数不同:一个正数有两个平方根,它们互为相反数;而一个正数的算术平方根只有一个。
    (3)表示方法不同:正数a的平方根表示为±,正数a的算术平方根表示为
    (4)取值范围不同:正数的算术平方根一定是正数;正数的平方根一正一负,两数互为相反数。
    联系:
    (1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种,是正的平方根。
    (2)存在条件相同:只有非负数才有平方根和算术平方根。
    (3)0的平方根,算术平方根均为0。开平方:求一个数的平方根的运算,叫做开平方。
    注:
    (1)平方和开平方的关系是互为逆运算;
    (2)乘方是求根的途径,开平方是一种运算,是求平方根的过程;
    (3)开方的方式是根号形式。

  •  

  • 电脑根号的打法:
    比较通用:
    左手按住换档键(Alt键)不放,接着依次按41420然后松开左手,根号√ ̄就出来了。
    运用Word的域命令在Word中根号:
    首先按住Ctrl+F9,出现{}后,在{}内输入EQ空格\r(开方次数,根号内的表达式),最后按住Shift+F9,就会生成你所要求的根式
    1.平方根
    一个正数的平方根有两个,它们互为相反数。比如 9 的平方根是3,-3。而5的平方根是√5,-√5。规定,零的平方根是0。负数没有平方根。
    2.算术平方根是指一个正数的正的平方根。比如 9 的算术平方根是±3。而5的算术平方根是±√5。规定,零的算术平方根是0。
    算术平方根是定义在平方根基础上,因此负数没有算术平方根。
    3.实数a的算术平方根记作√ ̄a,其中a≥0,根据以上定义有√ ̄a≥0。

考点名称:实数的运算

  • 实数的运算:
    实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。
    实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。

    四则运算封闭性:
    实数集R对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。

  • 实数的运算法则:
    1、加法法则:
    (1)同号两数相加,取相同的符号,并把它们的绝对值相加;
    (2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
    可使用
    ①加法交换律:两个数相加,交换加数的位置,和不变;即:a+b=b+a;
    ②加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,和不变;即:(a+b)+c=a+(b+c)。

    2、减法法则:减去一个数等于加上这个数的相反数。即a-b=a+(-b)

    3、乘法法则:
    (1)两数相乘,同号取正,异号取负,并把绝对值相乘。
    (2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
    (3)乘法可使用
    ①乘法交换律:两个数相乘,交换因数的位置,积不变,即:ab=ba;
    ②乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,即:(ab)c=a(bc);
    ③分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,即:a(b+c)=ab+ac。

    4、除法法则:
    (1)两数相除,同号得正,异号得负,并把绝对值相除。
    (2)除以一个数等于乘以这个数的倒数。
    (3)0除以任何数都等于0,0不能做被除数。

    5、乘方:所表示的意义是n个a相乘,即an,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数,乘方与开方互为逆运算。

    实数的运算顺序:
    乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐