已知α是锐角,且sin(α+15°)=32.(1)求α的值;(2)计算8-4cosα-(π-3.14)0+tanα的值.-数学

题文

已知α是锐角,且sin(α+15°)=

3
2

(1)求α的值;
(2)计算

8
-4cosα-(π-3.14)0+tanα的值.
题型:解答题  难度:中档

答案

(1)∵sin60°=

3
2
,α为锐角,
∴α+15°=60°,
∴α=45°;

(2)原式=2

2
-4×

2
2
-1+1
=2

2
-2

2
-1+1
=0.

据专家权威分析,试题“已知α是锐角,且sin(α+15°)=32.(1)求α的值;(2)计算8-4cosα-(π-3..”主要考查你对  零指数幂(负指数幂和指数为1),二次根式的定义,特殊角三角函数值  等考点的理解。关于这些考点的“档案”如下:

零指数幂(负指数幂和指数为1)二次根式的定义特殊角三角函数值

考点名称:零指数幂(负指数幂和指数为1)

  • 零指数幂定义:任何不等于零的数的零次幂都等于1。
    负指数幂的定义:任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数。
    指数为1:任何不等于零的数的1次幂,所得结果都等于这个数的本身。

考点名称:二次根式的定义

  • 二次根式:
    我们把形如叫做二次根式。
    二次根式必须满足:
    含有二次根号“”;
    被开方数a必须是非负数。

    确定二次根式中被开方数的取值范围:
    要是二次根式有意义,被开方数a必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围。

  • 二次根式性质:
    (1)a≥0 ; ≥0 (双重非负性 );

    (2)

    (3)
                                0(a=0);

    (4)

    (5)

  • 二次根式判定:
    ①二次根式必须有二次根号,如等;
    ②二次根式中,被开方数a可以是具体的一个数,也可以是代数式;
    ③二次根式定义中a≥0 是定义组成的一部分,不能省略;
    ④二次根式是一个非负数;
    ⑤二次根式与算术平方根有着内在的联系,(a≥0 )就表示a的算术平方根。

    二次根式的应用:
    主要体现在两个方面:
    (1)利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;
    (2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。

考点名称:特殊角三角函数值

  • 特殊角三角函数值表: