下列等式必定成立的是[]A.a2+a3=a5B.x2-y2=(x-y)2C.-x(2-x)=x2-2xD.x3÷x-5=x-2-九年级数学

首页 > 考试 > 数学 > 初中数学 > 平方差公式/2019-04-04 / 加入收藏 / 阅读 [打印]

题文

下列等式必定成立的是

[     ]

A.a2+a3=a5
B.x2-y2=(x-y)2
C.-x(2-x)=x2-2x
D.x3÷x-5=x-2

题型:单选题  难度:偏易

答案

C

据专家权威分析,试题“下列等式必定成立的是[]A.a2+a3=a5B.x2-y2=(x-y)2C.-x(2-x)=x..”主要考查你对  平方差公式,整式的加减,整式的乘法,整式的除法  等考点的理解。关于这些考点的“档案”如下:

平方差公式整式的加减整式的乘法整式的除法

考点名称:平方差公式

  • 表达式
    (a+b)(a-b)=a2-b2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式。

  • 特点:
    (1)左边是两项式相乘,一项完全相同,另一项互为相反数;
    (2)右边是乘方中两项的平方差。
    注:
    (1)公式中的a和b可以是具体的数也可以是单项式或多项式;
    (2)不能直接应用公式的,要善于转化变形,运用公式。

  • 常见错误:
    平方差公式中常见错误有:
    ①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)
    ②混淆公式;
    ③运算结果中符号错误;
    ④变式应用难以掌握。

    注意事项:
    1、公式的左边是个两项式的积,有一项是完全相同的。
    2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。
    3、公式中的a.b 可以是具体的数,也可以是单项式或多项式。

考点名称:整式的加减

  • 整式的加减:
    其实质是去括号和合并同类项,其一般步骤为:
    (1)如果有括号,那么先去括号;
    (2)如果有同类项,再合并同类项。
    注:整式加减的最后结果中不能含有同类项,即要合并到不能再合并为止。

  • 整式加减:
    整式的加减即合并同类项。把同类项相加减,不能计算的就直接拉下来。
    合并同类项时要注意以下三点:
    ①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准.字母和字母指数;
    ②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;
    ③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变。

  • 整式的乘除法:

考点名称:整式的乘法

  • 整式的乘法:
    包括(单项式)与(单项式)相乘;(单项式)与(多项式)相乘;(多项式)与(多项式)相乘
    单项式与单项式相乘的运算法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

  • 整式乘法法则:
    1、同底数的幂相乘:
    法则:同底数的幂相乘,底数不变,指数相加。数学符号表示:am.an=am+n(其中m、n为正整数)
    2、幂的乘方:
    法则:幂的乘方,底数不变,指数相乘。数学符号表示:(amn=amn(其中m、n为正整数)
    3、积的乘方:
    法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。(即等于积中各因式乘方的积。)
    数学符号表示:(ab)n=anbn(其中n为正整数)
    4、单项式与单项式相乘:
    把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
    5、单项式与多项式相乘:
    就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
    6、多项式与多项式相乘:
    先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
    7、乘法公式:
    平方差公式:(a+b)·(a-b)=a2-b2
    完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2

  • 整式乘法运算:
    单项式乘以单项式法则:
    单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式.
    注:单项式乘以单项式,实际上是运用了乘法结合律和同底数的幂的运算法则完成的。
    ①.积的系数等于各因式系数的积,先确定符号,再计算绝对值.这时容易出现的错误是,将系数相乘与指数相加混淆,
    如2a3·3a2=6a5,而不要认为是6a6或5a5.
    ②.相同字母的幂相乘,运用同底数幂的乘法运算性质.
    ③.只在一个单项式里含有的字母,要连同它的指数作为积的一个因式.
    ④.单项式乘法法则对于三个以上的单项式相乘同样适用.
    ⑤.单项式乘以单项式,结果仍是一个单项式.

    单项式乘以多项式的运算法则:
    单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,转化为单项式与单项式的乘法,然后再把所得的积相加.
    法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
    方法总结:在探究多项式乘以多项式时,是把某一个多项式看成一个整体,利用分配律进行计算,这里再一次说明了整体性思想在数学中的应用。

考点名称:整式的除法

  • 整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。单项式和多项式统称为整式。单项式相除,把它们的系数相除,同底数幂的幂相减,作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。 单项式除以多项式,用单项式除以多项式的每一项,再将所得的商相加并合并同类项。

  • 整式的除法法则:
    1、同底数的幂相除:法则:同底数的幂相除,底数不变,指数相减。
    数学符号表示: (a≠0,m、n为正整数,并且m>n)
    2、两个单项式相除,把系数、同底数幂分别相除后,作为商的因式;
    对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
    3、多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

  • 整式的除法运算:
    单项式÷单项式
    单项式相除,把系数、同底数幂分别相除后,作为商的因式;
    对于只在被除式中含有的字母,则连同它的指数一起作为商的一个因式。
    注:单项式除以单项式主要是通过转化为同底数幂的除法解决的。

    多项式÷单项式
    多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
    说明:多项式(没有同类项)除以单项式,结果的项数与多项式的项数相同,不要漏项。

    多项式÷单项式
    多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
    单项式除以多项式,用单项式除以多项式的每一项,再将所得的商相加并合并同类项。