一个非零自然数若能表示为两个非零自然数的平方差,则称这个自然数为“智慧数”,比如16=52-32,故16是一个“智慧数”,在自然数列中,从1开始起,第1990个“智慧数”是______.-数学
题文
一个非零自然数若能表示为两个非零自然数的平方差,则称这个自然数为“智慧数”,比如16=52-32,故16是一个“智慧数”,在自然数列中,从1开始起,第1990个“智慧数”是______. |
答案
设这两个数分别m、n, 设m>n, 即智慧数=m2-n2=(m+n)(m-n), 又∵mn是非0的自然数, ∴m+n和m-n就是两个自然数, 要判断一个数是否是智慧数,可以把这个数分解因数,分解成两个整数的积,看这两个数能否写成两个非0自然数的和与差. (k+1)2-k2=2k+1,(k+1)2-(k-1)2=4k,每个大于1的奇数与每个大于4且是4的倍数的数都是智慧数,而被4除余数为2的偶数都不是智慧数,最小智慧数为3,从5开始,智慧数是5,7,8,9,11,12,13,15,16,17,19,20…即2个奇数,1个4的倍数,3个一组依次排列下去. 显然1不是“智慧数”,而大于1的奇数2k+1=(k+1)2-k2,都是“智慧数”. 因为:4k=(k+1)2-(k-1)2,所以大于4且能被4整除的数都是“智慧数”而4不是“智慧数”,由于x2-y2=(x+y)×(x-y)(其中x、y∈N),当x,y奇偶性相同时,(x+y)×(x-y)被4整除.当x,y奇偶性相异时,(x+y)*(x-y)为奇数,所以形如4k+2的数不是“智慧数”在自然数列中前四个自然数中只有3是“智慧数”.此后每连续四个数中有三个“智慧数”. 由于1989=3×663, 所以4×664=2656是第1990个“智慧数”. 故答案为:2656. |
据专家权威分析,试题“一个非零自然数若能表示为两个非零自然数的平方差,则称这个自然..”主要考查你对 平方差公式 等考点的理解。关于这些考点的“档案”如下:
平方差公式
考点名称:平方差公式
- 表达式:
(a+b)(a-b)=a2-b2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式。 - 特点:
(1)左边是两项式相乘,一项完全相同,另一项互为相反数;
(2)右边是乘方中两项的平方差。
注:
(1)公式中的a和b可以是具体的数也可以是单项式或多项式;
(2)不能直接应用公式的,要善于转化变形,运用公式。 常见错误:
平方差公式中常见错误有:
①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)
②混淆公式;
③运算结果中符号错误;
④变式应用难以掌握。注意事项:
1、公式的左边是个两项式的积,有一项是完全相同的。
2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。
3、公式中的a.b 可以是具体的数,也可以是单项式或多项式。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |