观察下列各式(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1…(1)分解因式:x5-1=______;(2)根据规律可得(x-1)(xn-1+…+x+1)=______(其中n为正整数);(3)计算:(3-1)-数学

首页 > 考试 > 数学 > 初中数学 > 平方差公式/2019-04-04 / 加入收藏 / 阅读 [打印]

题文

观察下列各式
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1

(1)分解因式:x5-1=______;
(2)根据规律可得(x-1)(xn-1+…+x+1)=______(其中n为正整数);
(3)计算:(3-1)(350+349+348+…+32+3+1);
(4)计算:(-2)1999+(-2)1998+(-2)1997+…+(-2)3+(-2)2+(-2)+1.
题型:解答题  难度:中档

答案

(1)分解因式:x5-1=(x-1)(x4+x3+x2+x+1);

(2)(x-1)(xn-1+…+x+1)=xn-1;

(3)(3-1)(350+349+348+…+32+3+1)=351-1.

(4)∵(-2-1)[(-2)1999+(-2)1998+(-2)1997+…+(-2)3+(-2)2+(-2)+1],
=(-2)2000-1,
=22000-1,
∴(-2)1999+(-2)1998+(-2)1997+…+(-2)3+(-2)2+(-2)+1=-
22000-1
3

据专家权威分析,试题“观察下列各式(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1..”主要考查你对  平方差公式  等考点的理解。关于这些考点的“档案”如下:

平方差公式

考点名称:平方差公式

  • 表达式
    (a+b)(a-b)=a2-b2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式。

  • 特点:
    (1)左边是两项式相乘,一项完全相同,另一项互为相反数;
    (2)右边是乘方中两项的平方差。
    注:
    (1)公式中的a和b可以是具体的数也可以是单项式或多项式;
    (2)不能直接应用公式的,要善于转化变形,运用公式。

  • 常见错误:
    平方差公式中常见错误有:
    ①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)
    ②混淆公式;
    ③运算结果中符号错误;
    ④变式应用难以掌握。

    注意事项:
    1、公式的左边是个两项式的积,有一项是完全相同的。
    2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。
    3、公式中的a.b 可以是具体的数,也可以是单项式或多项式。