设a1=32-12,a2=52-32,…,an=(2n+1)2-(2n-1)2(n为大于0的自然数)。(1)探究an是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这-九年级数学
题文
设a1=32-12,a2=52-32,…,an=(2n+1)2-(2n-1)2(n为大于0的自然数)。 (1)探究an是否为8的倍数,并用文字语言表述你所获得的结论; (2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”,试找出a1,a2,…,an,…这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,an为完全平方数(不必说明理由)。 |
答案
解:(1)∵an=(2n+1)2-(2n-1)2=4n2+4n+1-4n2+4n-1=8n, 又n为非零的自然数, ∴an是8的倍数 这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数。 (2)这一列数中从小到大排列的前4个完全平方数为16,64,144,256 n为一个完全平方数的2倍时,an为完全平方数。 |
据专家权威分析,试题“设a1=32-12,a2=52-32,…,an=(2n+1)2-(2n-1)2(n为大于0的自然数..”主要考查你对 平方差公式 等考点的理解。关于这些考点的“档案”如下:
平方差公式
考点名称:平方差公式
- 表达式:
(a+b)(a-b)=a2-b2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式。 - 特点:
(1)左边是两项式相乘,一项完全相同,另一项互为相反数;
(2)右边是乘方中两项的平方差。
注:
(1)公式中的a和b可以是具体的数也可以是单项式或多项式;
(2)不能直接应用公式的,要善于转化变形,运用公式。 常见错误:
平方差公式中常见错误有:
①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)
②混淆公式;
③运算结果中符号错误;
④变式应用难以掌握。注意事项:
1、公式的左边是个两项式的积,有一项是完全相同的。
2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。
3、公式中的a.b 可以是具体的数,也可以是单项式或多项式。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:在括号内填上适当的项:(a-b+c)(a+b-c)=[a-()][a+()]=a2-()2。-八年级数学
下一篇:(x-y)(x+y)(x2+y2)(x4+y4)(x8+y8)=()。-七年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |