下列各式与x-yx+y(x≠y)相等的是()A.(x-y)+5(x+y)+5B.(x-y)2x2-y2C.2x-y2x+yD.x2-y2x2+y2-数学

首页 > 考试 > 数学 > 初中数学 > 分式的基本性质/2019-04-06 / 加入收藏 / 阅读 [打印]

题文

下列各式与
x-y
x+y
(x≠y)相等的是(  )
A.
(x-y)+5
(x+y)+5
B.
(x-y)2
x2-y2
C.
2x-y
2x+y
D.
x2-y2
x2+y2
题型:单选题  难度:偏易

答案

A、分子分母同时加5,不符合分式的基本性质,故A错误;
B、
x-y
x+y
的分子、分母上同时乘以x-y就得到第二个式子,故B正确;
C、不是分子、分母同时乘以2,故C错误;
D、
x2-y2
x2+y2
不能进行化简约分了,故D错误.
故选B.

据专家权威分析,试题“下列各式与x-yx+y(x≠y)相等的是()A.(x-y)+5(x+y)+5B.(x-y)2x2-y2..”主要考查你对  分式的基本性质   等考点的理解。关于这些考点的“档案”如下:

分式的基本性质

考点名称:分式的基本性质

  • 分式的基本性质:
    分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
    (C≠0),其中A、B、C均为整式。

  • 分式的符号法则:一个分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

    约分:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式约去,这种变形称为分式的约分。
    分式的约分步骤:
    (1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去;
    (2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。

    通分:根据分式的基本性质,把分子、分母同时乘以适当的整式,把几个异分母的分式转化为与原来的分式相等的同分母的分式,叫做分式的通分。 分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母;同时各分式按照分母所扩大的倍数,相应扩大各自的分子.