下列各题中,计算正确的有()①4(m+n)4m2+8mn+4n2=1m+n;②x+y+1-x+y+1=-1;③m2-3m+2m-m2=2-mm;④(a+b)÷(a+b)?1a+b=a+b.A.1个B.2个C.3个D.4个-数学
题文
下列各题中,计算正确的有( ) ①;②;③;④(a+b)÷(a+b)?=a+b.
|
答案
B |
据专家权威分析,试题“下列各题中,计算正确的有()①4(m+n)4m2+8mn+4n2=1m+n;②x+y+1-x+..”主要考查你对 分式的乘除,分式的基本性质 等考点的理解。关于这些考点的“档案”如下:
分式的乘除分式的基本性质
考点名称:分式的乘除
- 分式的乘除法则:
1、分式的乘法法则:
分式乘分式,用分子的积作为积的分子,分母的积作为分母。
用字母表示为:
2、分式的除法法则:
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘;除以一个分式,等于乘以这个分式的倒数。
用式子表示为:(b,c,d均不为零)
3、分式的乘方法则:分式乘方要把分子、分母分别乘方。
用式子表示为:(n为正整数),其中b≠0,a,b可以代表数,也可以代表代数式。 分式乘除的解题步骤:
分式乘法:
(1)先确定积的符号:数出整个参与运算的式子中负号的个数,如果有偶数个负号,积为正;
如果有奇数个负号,积为负;
(2)计算分子与分子的积;
(3)计算分母与分母的积;
(4)把积中的分子,分母进行约分,化成最简分式或整式。
在解题时,这些步骤是连贯的。分式除法
要注意两个变化:
一是运算符号的变化,由原来的除法运算变成乘法运算;
二是除式的分子、分母位置的变化,由原来的分子变成乘法中的分母,原来的分母变成乘法中的分子。
同学们也可以这样来理解这条法则:
两个分式相除,用被除式的分子乘以除式的分母,作为商的分子,用被除式的分母乘以除式的分子,作为商的分母。
这样,就和分式的乘法法则在表述形式上相近了,就好记忆些。
基本步骤:
(1)先确定积的符号:数出整个参与运算的式子中负号的个数,如果有偶数个负号,积为正;
如果有奇数个负号,积为负;
(2)计算被除式的分子与除式的分母的积,作为商的分子;
(3)计算被除式的分母与除式的分子的积,,作为商的分母;
(4)把商中的分子,分母进行约分,化成最简分式或整式。
此法,有点十字相乘的思想。就像比例的计算,内项之积为分子,外项之积为分母。
考点名称:分式的基本性质
- 分式的基本性质:
分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
即,(C≠0),其中A、B、C均为整式。 - 分式的符号法则:一个分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
约分:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式约去,这种变形称为分式的约分。
分式的约分步骤:
(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去;
(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
通分:根据分式的基本性质,把分子、分母同时乘以适当的整式,把几个异分母的分式转化为与原来的分式相等的同分母的分式,叫做分式的通分。 分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母;同时各分式按照分母所扩大的倍数,相应扩大各自的分子.
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |