计算下列各式:(1)1a-b+1a+b+2aa2+b2+4a3a4+b4;(2)x2+yzx2+(y-z)x-yz+y2-zxy2+(z+x)y+zx+z2+xyz2-(x-y)z-xy;(3)x3-1x3+2x2+2x+1+x3+1x3-2x2+2x-1-2(x2+1)x2-1(4)(y-x)(z-x)-数学

首页 > 考试 > 数学 > 初中数学 > 分式的加减/2019-04-08 / 加入收藏 / 阅读 [打印]

题文

计算下列各式:
(1)
1
a-b
+
1
a+b
+
2a
a2+b2
+
4a3
a4+b4

(2)
x2+yz
x2+(y-z)x-yz
+
y2-zx
y2+(z+x)y+zx
+
z2+xy
z2-(x-y)z-xy

(3)
x3-1
x3+2x2+2x+1
+
x3+1
x3-2x2+2x-1
-
2(x2+1)
x2-1

(4)
(y-x)(z-x)
(x-2y+z)(x+y-2z)
+
(z-y)(x-y)
(x+y-2z)(y+z-2x)
+
(x-z)(y-z)
(y+z-2x)(x-2y+z)
题型:解答题  难度:中档

答案

(1)
1
a-b
+
1
a+b
+
2a
a2+b2
+
4a3
a4+b4

=
2a
a2-b2
+
2a
a2+b2
+
4a3
a4+b4

=
4a3
a4-b4
+
4a3
a4+b4

=
8a7
a8-b8

(2)
x2+yz
x2+(y-z)x-yz
+
y2-zx
y2+(z+x)y+zx
+
z2+xy
z2-(x-y)z-xy

=
x(x-z)+z(x+y)
(x+y)(x-z)
+
y(x+y)-x(y+z)
(x+y)(y+z)
+
z(y+z)-y(z-x)
(z-x)(y+z)

=
x
x+y
+
z
x-z
+
y
y+z
-
x
x+y
-
z
x-z
-
y
y+z

=0;
(3)
x3-1
x3+2x2+2x+1
+
x3+1
x3-2x2+2x-1
-
2(x2+1)
x2-1

=
(x-1)(x2+x+1)
(x+1)(x2+x+1)
+
(x+1)(x2-x+1)
(x-1)(x2-x+1)
-
2(x2+1)
(x+1)(x-1)

=
x-1
x+1
+
x+1
x-1
-
2(x2+1)
(x+1)(x-1)

=0;
(4)设x-y=a,y-z=b,z-x=c,则
(y-x)(z-x)
(x-2y+z)(x+y-2z)
+
(z-y)(x-y)
(x+y-2z)(y+z-2x)
+
(x-z)(y-z)
(y+z-2x)(x-2y+z)

=-
ac
(a-b)(b-c)
-
ab
(b-c)(c-a)
-
cb
(c-a)(c-b)

=-
ac(c-a)+ab(a-b)+bc(b-c)
(a-b)(b-c)(c-a)

=
(a-b)(b-c)(c-a)
(a-b)(b-c)(c-a)

=1.

据专家权威分析,试题“计算下列各式:(1)1a-b+1a+b+2aa2+b2+4a3a4+b4;(2)x2+yzx2+(y-z)..”主要考查你对  分式的加减  等考点的理解。关于这些考点的“档案”如下:

分式的加减

考点名称:分式的加减

  • 分式的加减法则:
    同分母的分式相加减,分母不变,把分子相加减;
    异分母的分式相加减,先通分,变为同分母分式,然后再加减。
    用式子表示为:

  • 分式的加减要求:
    ①分式的加减运算结果必须是最简分式或整式,运算中要适时地约分;
    ②如果一个分式与一个整式相加减,那么可以把整式看成是分母为1的分式,先通分,再进行加减。