分式方程axx-2+1x+x+ax(x-2)=0有且仅有一个实根,求a的值.-数学
题文
分式方程
|
答案
方程两边同乘以x(x-2), 得ax2+x-2+x+a=0, 整理得ax2+2x+(a-2)=0. 分如下两种情况: (1)当a≠0时,原方程为一元二次方程. ①如果△>0,当有一根是0或2,另外一根使x(x-2)≠0时,原分式方程有且仅有一个实根. 当x=0时,原方程为a×02+2×0+a-2=0,解得a=2, 解方程2x2+2x=0,得x1=0,x2=-1; 当x=2时,原方程为a×22+2×2+a-2=0,解得a=-
解方程-
∴a=2或-
②如果△=0,此时一元二次方程有两相等的实数根,当此二等根使x(x-2)≠0时,原分式方程有且仅有一个实根. 由4-4a(a-2)=0,解得a=1±
当a=1±
∴a=1±
(2)当a=0时,原方程为一元一次方程. 解方程2x-2=0,得x=1. 当x=1时,x(x-2)≠0时,原分式方程有且仅有一个实根. 综上所述,a=2或-
|
据专家权威分析,试题“分式方程axx-2+1x+x+ax(x-2)=0有且仅有一个实根,求a的值.-数学-..”主要考查你对 解分式方程 等考点的理解。关于这些考点的“档案”如下:
解分式方程
考点名称:解分式方程
- 解法:
解分式方程的基本思想是把分式方程转化为整式方程,其一般步骤是:
(1)去分母:分式方程两边同乘以方程中各分母的最简公分母,把分式方程转化为整式方程。
(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂)
(2)解方程:解整式方程,得到方程的根;
(3)验根:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;
否则,这个解不是原分式方程的解,是原分式方程的增根。
如果分式本身约分了,也要带进去检验。
在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。
一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.
注意:
(1)注意去分母时,不要漏乘整式项。
(2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。
(3)増根使最简公分母等于0。
分式方程的特殊解法:
换元法:
换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。 解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法。
解分式方程注意:
①解分式方程的基本思想是把分式方程转化为整式方程,通过解整式方程进一步求得分式方程的解;
②用分式方程中的最简公分母同乘方程的两边,从而约去分母,但要注意用最简公分母乘方程两边各项时,切勿漏项;
③解分式方程可能产生使分式方程无意义的情况,那么检验就是解分式方程的必要步骤。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |