阅读下列材料:关于x的方程:x+1x=c+1c的解是x1=c,x2=1c;x-1x=c-1c(即x+-1x=c+-1c)的解是x1=cx2=-1c;x+2x=c+2c的解是x1=c,x2=2c;x+3x=c+3c的解是x1=c,x2=3c;…(1)请观察-数学
题文
阅读下列材料: 关于x的方程:x+
(1)请观察上述方程与解的特征,比较关于x的方程x+
(2)由上述的观察、比较、猜想、验证,可以得出结论: 如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:x+
|
答案
(1)猜想x+
验证:当x=c时,方程左边=c+
∴方程成立; 当x=
∴方程成立; ∴x+
(2)由x+
∴x-1=a-1,x-1=
∴x1=a,x2=
|
据专家权威分析,试题“阅读下列材料:关于x的方程:x+1x=c+1c的解是x1=c,x2=1c;x-1x=c-..”主要考查你对 解分式方程 等考点的理解。关于这些考点的“档案”如下:
解分式方程
考点名称:解分式方程
- 解法:
解分式方程的基本思想是把分式方程转化为整式方程,其一般步骤是:
(1)去分母:分式方程两边同乘以方程中各分母的最简公分母,把分式方程转化为整式方程。
(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂)
(2)解方程:解整式方程,得到方程的根;
(3)验根:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;
否则,这个解不是原分式方程的解,是原分式方程的增根。
如果分式本身约分了,也要带进去检验。
在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。
一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.
注意:
(1)注意去分母时,不要漏乘整式项。
(2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。
(3)増根使最简公分母等于0。
分式方程的特殊解法:
换元法:
换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。 解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法。
解分式方程注意:
①解分式方程的基本思想是把分式方程转化为整式方程,通过解整式方程进一步求得分式方程的解;
②用分式方程中的最简公分母同乘方程的两边,从而约去分母,但要注意用最简公分母乘方程两边各项时,切勿漏项;
③解分式方程可能产生使分式方程无意义的情况,那么检验就是解分式方程的必要步骤。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:有五张正面分别标有数字-1,0,2,4,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,那么使得关于x的分式方-数学
下一篇:已知方程3xx-1-2x-2x+3=0,如果设y=xx-1,那么原方程可化为关于y的整式方程是______.-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |