如图,点A是反比例函数(x<0)的图象上的一点,过点A作□ABCD,使点B、C在x轴上,点D在y轴上,则□ABCD的面积为[]A.1B.3C.6D.12-九年级数学

题文

如图,点A是反比例函数(x<0)的图象上的一点,过点A作□ABCD,使点B、C在x轴上,点D在y轴上,则□ABCD的面积为
[     ]
A.1
B.3
C.6
D.12
题型:单选题  难度:中档

答案

C

据专家权威分析,试题“如图,点A是反比例函数(x<0)的图象上的一点,过点A作□ABCD,使点..”主要考查你对  反比例函数的图像,平行四边形的性质  等考点的理解。关于这些考点的“档案”如下:

反比例函数的图像平行四边形的性质

考点名称:反比例函数的图像

  • 反比例函数的图象:
    反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
    反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。

  • 反比例函数图象的画法:
    1)列表:

    (2)描点:在平面直角坐标系中标出点。
    (3)连线:用平滑的曲线连接点。
    当双曲线在一三象限,K>0,在每个象限内,Y随X的增大而减小。
    当双曲线在二四象限,K<0,在每个象限内,Y随X的增大而增大。
    常见画法当两个数相等时那么曲线呈弯月型。

  • k的意义及应用:
    过反比例函数(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积。过反比例函数过一点,作垂线,三角形的面积为
    研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积
    所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

    推论内容:一次函数y=x+b或y=-x+b若与反比例函数存在两个交点,若设2点的横坐标分别为x1,x2,那么这两个交点与原点连线和两点之间的连线所构成的三角形面积为

  • 不同象限分比例函数图像:


    常见画法:

考点名称:平行四边形的性质

  • 平行四边形的概念:
    两组对边分别平行的四边形叫做平行四边形。
    平行四边形用符号“□ABCD,如平行四边形ABCD记作“□ABCD”,读作ABCD”。
    ①平行四边形属于平面图形。
    ②平行四边形属于四边形。
    ③平行四边形中还包括特殊的平行四边形:矩形,正方形和菱形等。
    ④平行四边形属于中心对称图形。

  • 平行四边形的性质:
    主要性质
    (矩形、菱形、正方形都是特殊的平行四边形。)
    (1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
    (简述为“平行四边形的两组对边分别相等”)
    (2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
    (简述为“平行四边形的两组对角分别相等”)
    (3)如果一个四边形是平行四边形,那么这个四边形的邻角互补
    (简述为“平行四边形的邻角互补”)
    (4)夹在两条平行线间的平行线段相等。
    (5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
    (简述为“平行四边形的对角线互相平分”)
    (6)连接任意四边形各边的中点所得图形是平行四边形。(推论)
    (7)平行四边形的面积等于底和高的积。(可视为矩形)
    (8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
    (9)平行四边形是中心对称图形,对称中心是两对角线的交点.
    (10)平行四边形不是轴对称图形,矩形和菱形是轴对称图形。
    注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。

    (11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。
    (12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。
    (13)平行四边形对角线把平行四边形面积分成四等分。
    (14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
    (15)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐