如图,直角梯形OABC,AB∥OC,反比例函数y=kx(x>0)的图象经过B点和BC的中点D,且梯形OABC的面积为23,则该反比例函数的解析式为______.-数学
题文
如图,直角梯形OABC,AB∥OC,反比例函数y=
|
题文
如图,直角梯形OABC,AB∥OC,反比例函数y=
|
题型:填空题 难度:中档
答案
方法一、设B点的坐标是(m,n),点C的坐标是(p,0), ∵D是BC的中点, ∴D的坐标是(
∵点D在函数y=
∴有k=
根据梯形OABC的面积为2
则得到
即
所以k=
方法二、设B(a,b),则D(2a,
∵梯形ABCO的面积是2
∴
∴ab=
∵D在双曲线上, ∴k=2a×
即k=
则该反比例函数的解析式为y=
|
据专家权威分析,试题“如图,直角梯形OABC,AB∥OC,反比例函数y=kx(x>0)的图象经过B点和..”主要考查你对 反比例函数的图像,求反比例函数的解析式及反比例函数的应用,梯形,梯形的中位线 等考点的理解。关于这些考点的“档案”如下:
反比例函数的图像求反比例函数的解析式及反比例函数的应用梯形,梯形的中位线
考点名称:反比例函数的图像
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。
反比例函数的应用:
建立函数模型,解决实际问题。
考点名称:梯形,梯形的中位线
梯形性质:
①梯形的上下两底平行;
②梯形的中位线(两腰中点相连的线叫做中位线)平行于两底并且等于上下底和的一半。
③等腰梯形对角线相等。
梯形判定:
1.一组对边平行,另一组对边不平行的四边形是梯形。
2.一组对边平行且不相等的四边形是梯形。
梯形中位线定理:
梯形中位线平行于两底,并且等于两底和的一半。
梯形中位线×高=(上底+下底)×高=梯形面积
梯形中位线到上下底的距离相等
中位线长度=(上底+下底)
梯形的周长与面积:
梯形的周长公式:上底+下底+腰+腰,用字母表示:a+b+c+d。
等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+b+2c。
梯形的面积公式:(上底+下底)×高÷2,用字母表示:S=(a+b)×h。
变形1:h=2s÷(a+b);
变形2:a=2s÷h-b;
变形3:b=2s÷h-a。
另一计算梯形的面积公式: 中位线×高,用字母表示:L·h。
对角线互相垂直的梯形面积为:对角线×对角线÷2。
梯形的分类:
等腰梯形:两腰相等的梯形。
直角梯形:有一个角是直角的梯形。
等腰梯形的性质:
(1)等腰梯形的同一底边上的两个角相等。
(2)等腰梯形的对角线相等。
(3)等腰梯形是轴对称图形。
等腰梯形的判定:
(1)定义:两腰相等的梯形是等腰梯形
(2)定理:在同一底上的两个角相等的梯形是等腰梯形
(3)对角线相等的梯形是等腰梯形。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |