已知不等式ax+b>0的解集为x>-ba,那么双曲线y=ax的图象上的点一定位于()A.第一象限B.第二象限C.第一、三象限D.第二、四象限-数学

题文

已知不等式ax+b>0的解集为x>-
b
a
,那么双曲线y=
a
x
的图象上的点一定位于(  )
A.第一象限B.第二象限
C.第一、三象限D.第二、四象限
题型:单选题  难度:中档

答案

∵不等式ax+b>0的解集为x>-
b
a

∴a>0,
∴双曲线y=
a
x
的图象经过第一、三象限.
故选C.

据专家权威分析,试题“已知不等式ax+b>0的解集为x>-ba,那么双曲线y=ax的图象上的点一定..”主要考查你对  反比例函数的性质,不等式待定系数的取值范围  等考点的理解。关于这些考点的“档案”如下:

反比例函数的性质不等式待定系数的取值范围

考点名称:反比例函数的性质

  • 反比例函数性质:
    1.当k>0时,图象分别位于第一、三象限;
    当k<0时,图象分别位于第二、四象限。
    2.当k>0,在同一个象限内,y随x的增大而减小;
    当k<0时,在同一个象限,y随x的增大而增大。
    3.当k>0时,函数在x<0上为减函数、在x>0上同为减函数;
    当k<0时,函数在x<0上为增函数、在x>0上同为增函数。
    定义域为x≠0;值域为y≠0。
    4.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交.
    5. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2 ,且等于|k|.
    6. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x ,y=-x,对称中心是坐标原点.

  • 函数图象位置和函数值的增减:
    反比例函数:,反比例函数的性质主要研究它的图象的位置和函数值的增减情况,列表归纳如下:

考点名称:不等式待定系数的取值范围

  • 不等式待定系数的取值范围就是已知不等式或不等式组的解集或特殊解,确定不等式中未知数的系数的取值范围。

  • 不等式待定系数的取值范围求法:
    一、根据不等式(组)的解集确定字母取值范围  
    例:
    如果关于x的不等式(a+1)x>2a+2.的解集为x<2,则a的取值范围是    (    )
        A.a<0  B.a<一l   C.a>l  D.a>一l
    解:将原不等式与其解集进行比较,发现在不等式的变形过程中运用了不等式的基本性质3,因此有a+l<0,得a<一1,故选B.

    二、根据不等式组的整数解情况确定字母的取值范围
    例:
    已知不等式组的整数解只有5、6。求a和b的范围.
    解:解不等式组得,借助于数轴,如图:

    知: 2+a只能在4与5之间。只能在6与7之间.
    ∴4≤2+a<5,6<≤7
    ∴2≤a<3,13<b≤15


    三、根据含未知数的代数式的符号确定字母的取值范围
    例:
    已知2a-3x+1=0,3b-2x-16=0,且a≤4<b,求x的取值范围.
    解:由2a-3x+1=0,可得a= ;由3b-2x-16=0,可得b= .
    又a≤4<b,
    所以,  ≤4<
    解得:-2<x≤3.

    四、逆用不等式组解集求解
    例: