有两个比,比值都是34,如果第一个比的后项与第2个比的前项都是12,这两个比组成的比例是______.-数学
题文
有两个比,比值都是
|
答案
前一个比的前项:
后一个比的后项:12÷
组成的比例9:12=12:16. 故答案为9:12=12:16. |
据专家权威分析,试题“有两个比,比值都是34,如果第一个比的后项与第2个比的前项都是1..”主要考查你对 比的化简,比例的意义,比例的基本性质 等考点的理解。关于这些考点的“档案”如下:
比的化简比例的意义,比例的基本性质
考点名称:比的化简
- 比的化简:
是根据比的基本性质,把比化简成最简整数比的过程。
最简整数比:比的前项和后项都是互质数的比。
比的基本性质:
比的前项和后项同时乘以或除以相同的数(0除外)比值不变。
参照:
1、商不变的性质
在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
2、分数的基本性质
分数的分子和分母同时乘以或者除以相同的数(0除外),分数的大小不变。 - 化简比和求比值的区别:
化简比的结果还是一个比,是一个最简单的整数比;
求比值的结果是一个数。 - 化简比的步骤:
(1)写成分数比
(2)利用比的基本性质把比的前、后项同时除以相同的数(0除外),直到前、后项互质为止.
(也可以用求比值的方法,但结果仍要写成两数比的形式)
考点名称:比例的意义,比例的基本性质
- 表示两个比相等的式子叫做比例。
比例的基本性质:
组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
在比例里,两个外项的积等于两个内项的积。
用字母表示为:如果 (a,b, c,d 都不等于零),那么ad=bc.
这是因为用bd去乘的两边,得?bd=?bd,所以ad=bc. 性质推论:
从比例的这个基本性质,可以推得:
如果两个数的积等于另外两个数的积,那么这四个数可以组成比例。
用式子表示就是:如果ad=bc,那么(b.d都不等于零)。
这是因为用bd 去除ad=bc两边,得 ,所以 。比例意义:
正比例的意义:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系。
正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变。
反比例的意义:
成反比例的量包括三个数量,一个定量和两个变量。研究两个变量之间的扩大(或缩小)的变化关系。一种量发生变化,引起另一种量发生相反的变化。这两种量是反比例的量,它们的关系成反比例关系。
反比例实质:
两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定。这两种量叫做成反比例的量。它们的关系叫做反比例关系。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |