判断。(对的打“√”,错的打“×”)1.比1小的数都是负数。[]2.所有自然数,不是奇数就是偶数。[]3.一场足球赛从晚上11:15开始转播,转播了100分钟,结束时是晚上12:15。[]4.两个棱-六年级数学
题文
判断。(对的打“√”,错的打“×”) 1.比1小的数都是负数。 |
[ ] |
2.所有自然数,不是奇数就是偶数。 |
[ ] |
3.一场足球赛从晚上11:15开始转播,转播了100分钟,结束时是晚上12:15。 |
[ ] |
4.两个棱长5厘米的正方体拼成一个长方体,这个长方体的棱长总和是120厘米。 |
[ ] |
5.圆内最长的线段就是圆的直径。 |
[ ] |
答案
1.×;2.√;3.×;4.×;5.√ |
据专家权威分析,试题“判断。(对的打“√”,错的打“×”)1.比1小的数都是负数。[]2.所有自然..”主要考查你对 长方体的认识,正方体的认识,时间的计算,圆的定义(认识)和圆周率,奇数,偶数,认识正负数 等考点的理解。关于这些考点的“档案”如下:
长方体的认识,正方体的认识时间的计算圆的定义(认识)和圆周率奇数,偶数认识正负数
考点名称:长方体的认识,正方体的认识
长方体:
由六个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫长方体。
正方体:
长宽高都相等的长方体叫正方体。
正方体是特殊的长方体:- 长方体的特征:
①长方体有6个面,每个面都是长方形(可能有两个面是正方形),相对的两个面完全相同。
②长方体有12条棱,每相对的4条棱相等(按照相等的棱长可分为3组)。
③三条棱相交的点叫顶点。长方体有8个顶点
④相交于同一顶点的棱不相等,分别叫做长方体的长,宽,高。以同一顶点上的长,宽,高为一组,可分为4组。
正方体的特征:
①正方体有6个面,面积都相等;
②正方体有12条棱,长度都相等,有8个顶点。
③正方体是一种特殊的长方体。
长方体和正方体都有6个面、12条棱、8个顶点。
如图所示: - 平面图形:
立体图形:
考点名称:时间的计算
- 时间计算:
小明上午9时30分从家里出发,下午13时20分到姥姥家,问小明到姥姥家走了多长时间?
这里的9时30分是出发时间,我们可以叫它开始时刻,这个13时20分是到姥姥家的时间,可以叫它结束时刻,这两个时刻之间的这一段时间就是我们要求的“经过时间”。 思路点拨:
1、把题目中的时间统一用24时计时法表示,如:
下午1时20分就是13时20分
2、经过时间=结束时间-开始时间
结束时间=开始时间+经过时间
开始时间=结束时间-经过时间3、1小时=60分钟,1分钟=60秒
考点名称:圆的定义(认识)和圆周率
圆的定义:
其一:平面上到定点的距离等于定长的点的集合叫圆。
其二:平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
圆周率:
等于圆的周长与直径的比,是个常量,用“π”表示。- 圆的特点:
圆就是平面上一种曲线图形。
圆上任意一点到圆心的距离都相等,这个距离就是圆的半径,用字母r表示。
圆上两点之间的部分叫做弧。
通过圆心并且两端都在圆上的线段叫做圆的直径。用字母d表示。
在一个圆里,有无数条半径,无数条直径,直径的长是半径的2倍。
在同一个圆内,所有的半径都相等,直径也都相等。
圆是轴对称图形,它的对称轴是直径,圆有无数条对称轴。
考点名称:奇数,偶数
- 奇数、偶数:
在自然数中,能被2整除的数,叫做偶数;不能被2整除的数是奇数。 - 奇数偶数性质:
偶数±偶数=偶数 奇数±奇数=偶数
偶数±奇数=奇数 奇数×奇数=奇数
偶数×偶数=偶数 奇数×偶数=偶数
0是一个特殊的偶数:
它既是正偶数与负偶数的分界线,又是正奇数与负奇数的分水岭。
考点名称:认识正负数
正负数是一个相对的概念,并且表示在一个情境中成对出现的两个具有相反意义的量。
任何正数前加上负号都等于负数,表示相反意义的数,负数比零小。
正数定义:
比0大的数叫正数。正数前面常有一个符号“+”,通常可以省略不写。
正数有无数个,包括正整数,正分数和正无理数。
正数的几何意义:
在数轴上表示正数的点都在数轴上0的右边。
正数即正实数,它包括正整数、正分数(含正小数)。而正整数只是正数中的一小部分。
而正数不包括0,大于0的才是正数。负数:
是数学术语,指小于0的实数,如?3。
在数轴线上,负数都在0的左侧,没有最大与最小的负数,所有的负数都比自然数小。
负数用负号(即相当于减号)“-”标记,如?2,?5.33,?45,?0.6等。去除负数前的负号等于这个负数的绝对数。-2的绝对值为2,-5.33的绝对值为5.33,-45的绝对值为45,-0.6的绝对值为0.6等。
负数是同绝对值正数的相反数。任何正数前加上负号都等于负数。
分数也可做负数,如:-2/50既不是正数也不是负数。
零上温度我们用正数表示,零下温度就用负数表示,
温度计(数轴)中0右边的数是正数,0左边的数是负数。负数的计算法则:
加法:
负数1+负数2=-|负数1+负数2|=负数
负数+正数=符号取绝对值较大的加数的符号,数值取“用较大的绝对值减去较小的绝对值 ”的所得值
减法:
负数1-负数2=负数1+|负数2| =负数1加上负数2的相反数,再按负数加正数的方法算
负数-正数=-|正数+负数|=负数异号两数相减,等于其绝对值相加
乘法:
负数1×负数2=|负数1×负数2| =正数
负数×正数=-|正数×负数| =负数
除法:
负数1÷负数2=|负数1÷负数2| =正数
负数÷正数=-|负数÷正数| =负数
总得来说,就是同数相除等于正数,异数相除等于负数。负数的由来:
人们在生活中经常会遇到各种相反意义的量。比如,在记账时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们就考虑了相反意义的数来表示。于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。可见正负数是生产实践中产生的。
据史料记载,早在两千多年前,中国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。比如,356摆成||| ,3056摆成等等。这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作。
中国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。
刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以斜正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。
中国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,[2]正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |