在一个正方体的6个面上分别涂上颜色,要使红色朝上的可能性是13,应该有______个面涂上红色.-数学

首页 > 考试 > 数学 > 小学数学 > 分数乘法及应用/2019-05-20 / 加入收藏 / 阅读 [打印]

题文

在一个正方体的6个面上分别涂上颜色,要使红色朝上的可能性是
1
3
,应该有______个面涂上红色.
题型:填空题  难度:偏易

答案

1
3
=2(面);
答:应该有 2个面涂上红色.
故答案为:2.

据专家权威分析,试题“在一个正方体的6个面上分别涂上颜色,要使红色朝上的可能性是13,..”主要考查你对  分数乘法及应用,可能性,概率  等考点的理解。关于这些考点的“档案”如下:

分数乘法及应用可能性,概率

考点名称:分数乘法及应用

  • 分数的乘法:
    分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。做第一步时,就要想一个数的分子和另一个分母能不能约分。
    分数与整数相乘就是把多个同样的数叠加,如2/3x2,就是指2个2/3相加,2/3x10是指10个2/3相加。
    应用:
    求一个数的几分之几是多少,用乘法来计算。
    “求一个数的几倍是多少”和“求一个数的几分之几是多少”的数量关系是相同的。
    一个数乘分数实际也是求这个数的几分之几倍,习惯上把“倍”省去,就说求这个数的几分这几。
    特征:
    已知条件表示单位“1”的量,单位“1”的几分之几。所求问题:求单位“1”的几分之几。

考点名称:可能性,概率

  • 可能性:
    是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标。有些事件的发生是确定的,有些是不确定的。用“可能”、“不可能”“一定”等表达事物发生的情况。 
    常见方法有:抛骰子、摸球、转盘。
    概率:
    又称或然率、机会率或机率、可能性,是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生的可能性的度量。

  • 随机事件:
    有些事件在一定的条件下可能发生,也可能不发生,结果不确定。例如,购买彩票能否 中奖,开出的列车能否正点到达。明年今天是否下雨等待,我们称之为随机事件。
    我们用随机事件的“概率”来表示随机事件发生可能性大小:概率是0到1之间的一个数,概率随机事件发生的可能性大。
    在小学阶段我们只计算最简单的一些随机事件的概率,这种计算方法以“等可能性”为基础。在有些情况下,虽然有些事情的结果是不确定的(随机性的),但是由于某种“对称性”,不同的基本结果发生的可能性是相同的,这时,我们说这些基本结果是等可能的,从而确定相关事件的概率。例如:
    投一枚均匀硬币,“出现正面”“出现反面”这两种基本结果是等可能的,所以“出现正面”和“出现反面”的概率都是1/2;
    投一枚色子(骰子),“出现1点”“出现2点”......“出现6点”这六种基本情况是等可能的,其概率是1/6 。
    对于随机事件,我们关心的是事件发生的可能性。

    事件发生的可能性大小是可以比较的,所以人们常说一件事情“不可能”""不大可能”“很可能”“非常可能”“绝对可能”......这些说法反应可能性大小的不同程度。
    射击时,“射中十环”的可能性比“射中九环”的可能性小;
    一分钟投篮,“投中15个”比“投中10个”的可能性小