斐波那契数列1,1,2,3,5,8,…从第三个数起,以后的每一个数都是它前面两个数的和,请问:(1)这个数列里的数字在奇偶性方面有什么规律?(2)这个数列的前2012个数中,有多少-数学

首页 > 考试 > 数学 > 小学数学 > 找规律/2019-02-09 / 加入收藏 / 阅读 [打印]

题文

斐波那契数列1,1,2,3,5,8,…从第三个数起,以后的每一个数都是它前面两个数的和,请问:
(1)这个数列里的数字在奇偶性方面有什么规律?
(2)这个数列的前2012个数中,有多少个奇数?
题型:解答题  难度:中档

答案

(1)这数列的数字是按照:奇数、奇数、偶数这三个一组进行循环排列的;其中前两个是奇数,第三个是偶数.

(2)2012÷3=670…2;
余数是2,那么这个数列的第2011个数和第2012个数是奇数;
670×2+2,
=1340+2,
=1342(个);
答:一共有1342个奇数.

据专家权威分析,试题“斐波那契数列1,1,2,3,5,8,…从第三个数起,以后的每一个数都..”主要考查你对  找规律  等考点的理解。关于这些考点的“档案”如下:

找规律

考点名称:找规律

  • 学习目标:
    1、通过观察、实验、猜测、推理等活动发现图形的排列规律。
    2、培养初步的观察、推理能力。

  • 知识点拨:
    在日常生活中,我们经常会碰到许多按一定顺序排列的数(或图形)。只要我们从不同的角度去分析研究,善于观察、分析、总结,就能发现规律,找到解决问题的方法。
    找规律填数关键是根据已知的数找出数与数之间的规律。看相邻两数的倍数关系、差是常用的观察方法。
    寻找数列的规律,通常从两个方面来考虑:
    (1)寻找各项与项数间的关系;
    (2)考虑相邻项之间的关系,然后,再总结出一般的规律。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐