已知a,b为互质数,且9a+18b为一个一位数的平方,则a,b可取的数对有()对。-六年级数学

题文

已知a,b为互质数,且9a+18b为一个一位数的平方, 则a,b可取的数对有(  )对。
题型:填空题  难度:中档

答案

4

据专家权威分析,试题“已知a,b为互质数,且9a+18b为一个一位数的平方,则a,b可取的数..”主要考查你对  质数,互质数,分解质因数,合数,可能性,概率  等考点的理解。关于这些考点的“档案”如下:

质数,互质数,分解质因数,合数可能性,概率

考点名称:质数,互质数,分解质因数,合数

  • 一个数只有1和它本身两个约数,这样的数叫做质数。 
    一个数除了1和它本身,还有别的约数,这样的数叫合数。 
    1既不是质数也不是合数。
    公约数只有1的两个数叫做互质数。
    每个合数都可以写成几个质数相乘的形式,这几个质数就叫做这个合数的质因数。
    把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数。通常用短除法分解质因数。

考点名称:可能性,概率

  • 可能性:
    是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标。有些事件的发生是确定的,有些是不确定的。用“可能”、“不可能”“一定”等表达事物发生的情况。 
    常见方法有:抛骰子、摸球、转盘。
    概率:
    又称或然率、机会率或机率、可能性,是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生的可能性的度量。

  • 随机事件:
    有些事件在一定的条件下可能发生,也可能不发生,结果不确定。例如,购买彩票能否 中奖,开出的列车能否正点到达。明年今天是否下雨等待,我们称之为随机事件。
    我们用随机事件的“概率”来表示随机事件发生可能性大小:概率是0到1之间的一个数,概率随机事件发生的可能性大。
    在小学阶段我们只计算最简单的一些随机事件的概率,这种计算方法以“等可能性”为基础。在有些情况下,虽然有些事情的结果是不确定的(随机性的),但是由于某种“对称性”,不同的基本结果发生的可能性是相同的,这时,我们说这些基本结果是等可能的,从而确定相关事件的概率。例如:
    投一枚均匀硬币,“出现正面”“出现反面”这两种基本结果是等可能的,所以“出现正面”和“出现反面”的概率都是1/2;
    投一枚色子(骰子),“出现1点”“出现2点”......“出现6点”这六种基本情况是等可能的,其概率是1/6 。
    对于随机事件,我们关心的是事件发生的可能性。

    事件发生的可能性大小是可以比较的,所以人们常说一件事情“不可能”""不大可能”“很可能”“非常可能”“绝对可能”......这些说法反应可能性大小的不同程度。
    射击时,“射中十环”的可能性比“射中九环”的可能性小;
    一分钟投篮,“投中15个”比“投中10个”的可能性小

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐