如图,在正方形场地ABCD的四周有32个洞(每边9个洞),一个工人扛着32面旗子,从A洞开始插旗,按顺时针方向,每隔5个洞就插一面旗,当他绕着正方形走完5圈时,发现有n个洞不能-数学

首页 > 考试 > 数学 > 小学数学 > 植树问题/2019-08-12 / 加入收藏 / 阅读 [打印]

题文

如图,在正方形场地ABCD的四周有32个洞(每边9个洞),一个工人扛着32面旗子,从A洞开始插旗,按顺时针方向,每隔5个洞就插一面旗,当他绕着正方形走完5圈时,发现有n个洞不能插旗,求n.
题型:解答题  难度:中档

答案


插旗子的洞是:1-7-13-19-25-31-5-11-17-23-29-3-9-15-21-27,之后就循环;共有16个洞插旗子;
所以,n=32-16=16.

据专家权威分析,试题“如图,在正方形场地ABCD的四周有32个洞(每边9个洞),一个工人扛着..”主要考查你对  植树问题  等考点的理解。关于这些考点的“档案”如下:

植树问题

考点名称:植树问题

  • 植树问题:
    把研究植树的棵树、株距与线路总长之间关系的问题称为植树问题。

  •  

  • 植树问题公式:
    (1)非封闭线路上的植树问题分为以下三种:
    ①如果在非封闭线路的两端都要植树,那么:
    株数=段数+1=全长÷株距+1;
    全长=株距×(株数-1);
    株距=全长÷(株数-1)。
    ②如果在非封闭线路的一端要植树,另一端不要植树,那么:
    株数=段数=全长÷株距;
    全长=株距×株数;
    株距=全长÷株数。
    ③如果在非封闭线路的两端都不要植树,那么:
    株数=段数-1=全长÷株距-1;
    全长=株距×(株数+1);
    株距=全长÷(株数+1)。
    (2)在封闭线路上的植树问题的数量关系如下:
    株数=段数=全长÷株距;
    全长=株距×株数;
    株距=全长÷株数。
    解决植树问题首先要分清植树线路是否是封闭的;
    其次还要注意题目的具体要求(单侧植树还是两侧植树,两端是否植树等)。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐