已知三个不同的质数a,b,c满足abbc+a=2000,那么a+b+c=______.-数学

题文

已知三个不同的质数a,b,c满足abbc+a=2000,那么a+b+c=______.
题型:填空题  难度:中档

答案

∵abbc+a=2000,
∴a(bbc+1)=2000.
∵8|2000,
∴a、(bbc+1)均为偶数.
又∵a、b、c是不同的质数,而2是质数中唯一的偶数,
∴a=2.
∴bbc+1=
2000
2
=1000,
∴bbc=999.
又∵999=33×37,且(3,37)=1,
∴b=3,c=37,
∴a+b+c=2+3+37=42.

据专家权威分析,试题“已知三个不同的质数a,b,c满足abbc+a=2000,那么a+b+c=______.-..”主要考查你对  有理数定义及分类  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐