在1,2,3…,N这前N个自然数中,共有p个质数,q个合数,m个奇数,n个偶数,则(p-m)+(q-n)=______.-数学

题文

在1,2,3…,N这前N个自然数中,共有p个质数,q个合数,m个奇数,n个偶数,则(p-m)+(q-n)=______.
题型:填空题  难度:中档

答案

p+q=N-1,m+n=N,
则(p-m)+(q-n),
=p-m+q-n,
=(p+q)-(m+n),
=(N-1)-N,
=-1.
故答案是:-1.

据专家权威分析,试题“在1,2,3…,N这前N个自然数中,共有p个质数,q个合数,m个奇数,..”主要考查你对  有理数定义及分类  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐