阅读下列材料,并解答后面的问题:∵=(1-),=(-),…,=(-)∴……+=(1-)+-)+…+-)===①在式子中,第五项为,第n项为。②解方程:=(有计算过程)-八年级数学

题文

阅读下列材料,并解答后面的问题:
=(1-), =(), … ,=()
……+
=(1-)+)+ … +)
=
=
=
①在式子中,第五项为         ,第n项为             
②解方程:=(有计算过程)

题型:解答题  难度:中档

答案

(1)第五项是,第n项是:
(2)===

(1)根据式子的特点可知:第n个式子中分子是两个连续的奇数相乘,第n个式子,第一个奇数是从1开始第n个奇数,据此即可写出两个式子;
(2)把每个项分成两个分式相减,即可化简求解.

据专家权威分析,试题“阅读下列材料,并解答后面的问题:∵=(1-),=(-),…,=(-)∴……+=(1-)+-)..”主要考查你对  有理数定义及分类,正数与负数,数轴,相反数  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类正数与负数数轴相反数

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数

考点名称:正数与负数

  • 正数:
    就是大于0的(实数)
    负数
    就是小于0的(实数)
    0既不是正数也不是负数。

    非负数:正数与零的统称。
    非正数:负数与零的统称。

  • 正负数的认识:
    1.对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。
    例如:-a一定是负数吗?
    答案是不一定,因为字母a可以表示任意的数。
    若a表示正数时,-a是负数;
    当a表示0时,-a就是在0的前面加一个负号,仍是0,0不分正负;
    当a表示负数时,-a就不是负数了,它是一个正数。

    2.引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,
    如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…

    3.数细分有五类:正整数、正分数、0、负整数、负分数;
    但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。

    4.通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;
    负整数和0统称为非正整数。

考点名称:数轴

  • 数轴定义:
    规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。
    数轴具有三要素:
    原点、正方向和单位长度,三者缺一不可。
    数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。

  • 用数轴上的点表示有理数:
    每一个有理数都可用数轴上的点来表示,表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0。
    1.数轴上的点表示的数不一定都是有理数,还可能是无理数,但有理数都可用数轴上的点来表示。
    2.表示正数的点都在原点右边,表示负数的点都在原点左边。
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐