,则xy=(),(a≤1)=()。-九年级数学

题文

,则xy=(    ),( a≤1)=(    )。
题型:填空题  难度:中档

答案

9,3﹣2a

据专家权威分析,试题“,则xy=(),(a≤1)=()。-九年级数学-”主要考查你对  二次根式的加减乘除混合运算,二次根式的化简,有理数的乘方,二次根式的定义  等考点的理解。关于这些考点的“档案”如下:

二次根式的加减乘除混合运算,二次根式的化简有理数的乘方二次根式的定义

考点名称:二次根式的加减乘除混合运算,二次根式的化简

  • 二次根式的加减乘除混合运算:
    顺序与师叔运算的顺序一样,先乘方,后乘除,最后算加减,有括号的先算括号内的。
    ①在运算过程中,多项式乘法,乘法公式和有理数(式)中的运算律在二次根式的运算中仍然适用。
    ②二次根式的加减乘除混合运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”。
    ③运算结果是根式的,一般应表示为最简二次根式。
    二次根式的化简:
    先对分子、分母因式分解,能约分的就约分,能开方的就开方,或先对被开方数进行通分,然后再通过分母有理化进行化简。

  • 二次根式混合运算掌握:
    1、确定运算顺序。
    2、灵活运用运算定律。
    3、正确使用乘法公式。
    4、大多数分母有理化要及时。
    5、在有些简便运算中也许可以约分,不要盲目有理化。
    6、字母运算时注意隐含条件和末尾括号的注明。
    7、提公因式时可以考虑提带根号的公因式。

    二次根式化简方法:
    二次根式的化简是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。
    分母有理化:
    分母有理化即将分母从非有理数转化为有理数的过程,以下列出分母有理化的几种方法:
    (1)直接利用二次根式的运算法则:
    例:
    (2)利用平方差公式:
    例:
    (3)利用因式分解:
    例:(此题可运用待定系数法便于分子的分解)

    换元法(整体代入法):
    换元法即把根式中的某一部分用另一个字母代替的方法,是化简的重要方法之一。
    例:在根式中,令,即可得到
    原式=√(u2+9-6u)+√(u2+25-10u)=√(u-3)2+√(u-5)2=2u-8=2√(x+2)-8

    提公因式法:
    例:计算


    巧构常值代入法:
    例:已知x2-3x+1=0,求的值。
    分析:已知形如ax2+bx+c=0(x≠0)的条件,所求式子中含有的项,可先将ax2+bx+c=0化为x+=,即先构造一个常数,再代入求值。
    解:显然x≠0,x2-3x+1=0化为x+=3。
    原式==2.

考点名称:有理数的乘方

  • 有理数乘方的定义:
    求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
    22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
    ①习惯上把22叫做2的平方,把23叫做2的立方;
    ②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。

  • 乘方的性质:
    乘方是乘法的特例,其性质如下:
    (1)正数的任何次幂都是正数;
    (2)负数的偶次幂是正数,负数的奇次幂是负数;
    (3)0的任何(除0以外)次幂都是0;
    (4)a2是一个非负数,即a2≥0。

  • 有理数乘方法则:
    ①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
    ②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0

    点拨:
    ①0的次幂没意义;
    ②任何有理数的偶次幂都是非负数;
    ③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
    ④负数的乘方与乘方的相反数不同。

  • 乘方示意图:

考点名称:二次根式的定义

  • 二次根式:
    我们把形如叫做二次根式。
    二次根式必须满足:
    含有二次根号“”;
    被开方数a必须是非负数。

    确定二次根式中被开方数的取值范围:
    要是二次根式有意义,被开方数a必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围。

  • 二次根式性质:
    (1)a≥0 ; ≥0 (双重非负性 );

    (2)

    (3)
                                0(a=0);

    (4)

    (5)

  • 二次根式判定:
    ①二次根式必须有二次根号,如等;
    ②二次根式中,被开方数a可以是具体的一个数,也可以是代数式;
    ③二次根式定义中a≥0 是定义组成的一部分,不能省略;
    ④二次根式是一个非负数;
    ⑤二次根式与算术平方根有着内在的联系,(a≥0 )就表示a的算术平方根。

    二次根式的应用:
    主要体现在两个方面:
    (1)利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;
    (2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。