已知a、b为整数,若一元二次方程x2-axa-b+(2a-b-1)x+a2+a-b-4=0的根都是整数,求a、b的值.-数学

题文

已知a、b为整数,若一元二次方程x2-axa-b+(2a-b-1)x+a2+a-b-4=0的根都是整数,求a、b的值.
题型:解答题  难度:中档

答案

根据题目分三种情况讨论:
①当a-b=2即b=a-2时,
原方程可化为:(1-a)x2+(a+1)x+(a-2)=0,
设方程两根为:x1,x2,则:x1+x2=
a+1
a-1
,x1x2=
a-2
1-a

∵x1,x2为整数,∴x1+x2=
a+1
a-1
,x1x2=
a-2
1-a
均为整数,
可得:

a=2
b=0
或者

a=0
b=2

②当a-b=1即b=a-1时,
原方程可化为:x2+a2-3=0,
当:x1,x2,a,b为整数时,无解;
③当a-b=0即a=b时,
原方程可化为:x2+(a-1)x+a2-a-4=0,
x1+x2=1-a,x1x2=a2-a-4,
可得有无数组a,b,x1,x2满足题意.

据专家权威分析,试题“已知a、b为整数,若一元二次方程x2-axa-b+(2a-b-1)x+a2+a-b-4=0的..”主要考查你对  一元二次方程的定义,一元二次方程根与系数的关系  等考点的理解。关于这些考点的“档案”如下:

一元二次方程的定义一元二次方程根与系数的关系

考点名称:一元二次方程的定义

  • 定义
    只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

    一元二次方程的一般形式:
    它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中 ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。

  • 方程特点;
    (1)该方程为整式方程。
    (2)该方程有且只含有一个未知数。
    (3)该方程中未知数的最高次数是2。

    判断方法:

    要判断一个方程是否为一元二次方程,先看它是否为整式方程。若是,再对它进行整理。如果能整理为(a≠0)的形式,则这个方程就为一元二次方程。

  • 点拨:
    ①“a≠0”是一元二次方程的一般形式的重要组成部分,当a=0,b≠0时,她就成为一元一次方程了。反之,如果明确了是一元二次方程,就隐含了a≠0这个条件;
    ②任何一个一元二次方程, 经过整理都能化成一般形式,在判断一个方程是不是一元二次方程时,首先化成一般形式,再判断;
    ③二次项系数、一次项系数和常数项都是在一般形式下定义的,所以咋确定一元二次方程各项的系数时,应首先将方程化为一般形式;
    ④项的系数包括它前面的符号。如:x2+5x+3=0的一次项系数是5,而不是5x;3x2+4x-1=0的常数项是-1而不是1;
    ⑤若一元二次方程化为一元二次方程的一般形式,并指出二次项系数、一次项系数和常数项。

考点名称:一元二次方程根与系数的关系

  • 一元二次方程根与系数的关系:
    如果方程 的两个实数根是那么
    也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  • 一元二次方程根与系数关系的推论:
    1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
    2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
    提示:
    ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
    ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
    ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐