设x1、x2是关于x的方程x2-4x+k+1=0的两个实数根,试问:是否存在实数k,使得x1·x2>x1+x2成立,请说明理由。温馨提示关于x的一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,-九年级数学

题文

设x1、x2是关于x的方程x2-4x+k+1=0的两个实数根,试问:是否存在实数k,使得x1·x2 >x1+x2成立,请说明理由。

温馨提示
关于x的一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,则它的两个实数根是:

题型:解答题  难度:中档

答案

解:不存在,
因为一元二次方程有两个实根,由b2-4ac≥0,得16-4(k+1)≥0,
解得k≤3,
x1、x2是一元二次方程的两个实数根,
所以x1+x2=4,x1·x2=k+1,
而x1·x2>x1+x2,即k+1>4,
∴k>3,
所以不存在实数k,使得x1·x2>x1+x2成立。

据专家权威分析,试题“设x1、x2是关于x的方程x2-4x+k+1=0的两个实数根,试问:是否存在实..”主要考查你对  一元二次方程根与系数的关系  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根与系数的关系

考点名称:一元二次方程根与系数的关系

  • 一元二次方程根与系数的关系:
    如果方程 的两个实数根是那么
    也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  • 一元二次方程根与系数关系的推论:
    1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
    2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
    提示:
    ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
    ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
    ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐