阅读:一元二次方程根与系数存在下列关系:ax2+bx+c=0(a≠0),x1,x2,x1+x2=-ba,x1?x2=ca理解并完成下列各题:若关于x的方程mx2-x+m=0(m≠0)的两根为x1、x2.(1)用m的代数式来表-数学

题文

阅读:一元二次方程根与系数存在下列关系:
ax2+bx+c=0(a≠0),x1,x2,x1+x2=-
b
a
,x1?x2=
c
a

理解并完成下列各题:
若关于x的方程mx2-x+m=0(m≠0)的两根为x1、x2
(1)用m的代数式来表示
1
x1
+
1
x2

(2)设S=
4
x1
+
4
x2
,S用m的代数式表示;
(3)当S=16时,求m的值并求此时方程两根的和与积.
题型:解答题  难度:中档

答案

(1)根据题意得x1+x2=
1
m
,x1?x2=1,
1
x1
+
1
x2
=
x1+x2
x1x2
=
1
m

(2)S=4(
1
x1
+
1
x2
)=
4
m

(3)当S=16,则
4
m
=16,解得m=
1
4

此时x1+x2=4,x1?x2=1.

据专家权威分析,试题“阅读:一元二次方程根与系数存在下列关系:ax2+bx+c=0(a≠0),x1,x..”主要考查你对  一元二次方程根与系数的关系  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根与系数的关系

考点名称:一元二次方程根与系数的关系

  • 一元二次方程根与系数的关系:
    如果方程 的两个实数根是那么
    也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  • 一元二次方程根与系数关系的推论:
    1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
    2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
    提示:
    ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
    ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
    ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐