若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c为系数且为常数)的两个根,则x1+x2=、x1x2=,这个定理叫做韦达定理.如:x1、x2是方程x2+2x﹣1=0的两个根,则x1+x2=﹣2、x1x2=﹣1-八年级数学

题文

若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c 为系数且为常数)的两个根,则x1+x2=、x1x2=,这个定理叫做韦达定理.如:x1、x2是方程x2+2x﹣1=0的两个根,则x1+x2=﹣2、x1x2=﹣1.若x1、x2是一元两次方程2x2+mx﹣2m+1=0的两个实数根.
试求:
(1)x1+x2与x1x2的值(用含有m的代数式表示);
(2)若x12+x22=4,试求m的值。
题型:解答题  难度:中档

答案

解:(1)∵x1、x2是一元两次方程2x2+mx﹣2m+1=0的两个实数根,
∴x1+x2=、x1x2=
(2)∵x12+x22=(x1+x22﹣2x1x2=(2﹣2×=4,
+2m﹣1=4,
解方程得:m1=2,m2=﹣10,
当m=2时,原方程为:2x2+2x﹣3=0,△=28>0,
符合题意;当m=﹣10时,原方程为:2x2﹣10x+21=0,△=﹣68<0,
不符合题意,舍去,
∴m的值为2。

据专家权威分析,试题“若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c为系数且为常数)..”主要考查你对  一元二次方程根与系数的关系  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根与系数的关系

考点名称:一元二次方程根与系数的关系

  • 一元二次方程根与系数的关系:
    如果方程 的两个实数根是那么
    也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  • 一元二次方程根与系数关系的推论:
    1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
    2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
    提示:
    ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
    ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
    ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0