设sinα、cosα是方程x2-mx+12=0的两根,△ABC的三边分别为sinα、cosα、12m,则△ABC的形状是______三角形.-数学

题文

设sinα、cosα是方程x2-

m
x+
1
2
=0的两根,△ABC的三边分别为sinα、cosα、
1
2
m,则△ABC的形状是______三角形.
题型:解答题  难度:中档

答案

∵sinα、cosα是方程x2-

m
x+
1
2
=0的两根,
∴sinα+cosα=

m
①,sinα?cosα=
1
2
②,sin2α+cos2α=1③,
①式两边平方得,sin2α+cos2α+2sinα?cosα=m④,
把②③代入④得,1+1=m,
∴m=2,
∴△ABC的三边分别为sinα,cosα,1,
而sin2α+cos2α=12
∴△ABC为直角三角形.
故答案为:直角.

据专家权威分析,试题“设sinα、cosα是方程x2-mx+12=0的两根,△ABC的三边分别为sinα、co..”主要考查你对  一元二次方程根与系数的关系,锐角三角函数的定义  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根与系数的关系锐角三角函数的定义

考点名称:一元二次方程根与系数的关系

  • 一元二次方程根与系数的关系:
    如果方程 的两个实数根是那么
    也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  • 一元二次方程根与系数关系的推论:
    1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
    2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
    提示:
    ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
    ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
    ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0

考点名称:锐角三角函数的定义

  • 锐角三角函数
    锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
    初中学习的 锐角三角函数值的定义方法是在直角三角形中定义的,所以在初中阶段求锐角的三角函数值,都是通过构造直角三角形来完成的,即把这个角放到某个直角三角形中。所谓锐角三角函数是指:我们初中研究的都是锐角的三角函数。初中研究的锐角的三角函数为:正弦(sin),余弦(cos),正切(tan)。
    正弦:在直角三角形中,锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即
    余弦:在直角三角形中,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即
    正切:在直角三角形中,锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即
    锐角A的正弦、余弦、正切都叫做A的锐角三角函数。

  • 锐角三角函数的增减性:
    1.锐角三角函数值都是正值
    2.当角度在0°~90°间变化时,
    正弦值随着角度的增大(或减小)而增大(或减小) ,余弦值随着角度的增大(或减小)而减小(或增大) ;
    正切值随着角度的增大(或减小)而增大(或减小) ,余切值随着角度的增大(或减小)而减小(或增大);
    正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。
    3.当角度在0°≤A≤90°间变化时,0≤sinA≤1, 1≥cosA≥0;当角度在0°<A0, cotA>0。

  • 锐角三角函数的关系式:
    同角三角函数基本关系式
    tanα·cotα=1
    sin2α·cos2α=1
    cos2α·sin2α=1
    sinα/cosα=tanα=secα/cscα
    cosα/sinα=cotα=cscα/secα
    (sinα)2+(cosα)2=1
    1+tanα=secα
    1+cotα=cscα

    诱导公式
    sin(-α)=-sinα
    cos(-α)=cosα
    tan(-α)=-tanα
    cot(-α)=-cotα
    sin(π/2-α)=cosα
    cos(π/2-α)=sinα
    tan(π/2-α)=cotα
    cot(π/2-α)=tanα
    sin(π/2+α)=cosα
    cos(π/2+α)=-sinα
    tan(π/2+α)=-cotα
    cot(π/2+α)=-tanα
    sin(π-α)=sinα
    cos(π-α)=-cosα
    tan(π-α)=-tanα
    cot(π-α)=-cotα
    sin(π+α)=-sinα
    cos(π+α)=-cosα
    tan(π+α)=tanα
    cot(π+α)=cotα
    sin(3π/2-α)=-cosα
    cos(3π/2-α)=-sinα
    tan(3π/2-α)=cotα
    cot(3π/2-α)=tanα
    sin(3π/2+α)=-cosα
    cos(3π/2+α)=sinα
    tan(3π/2+α)=-cotα
    cot(3π/2+α)=-tanα
    sin(2π-α)=-sinα
    cos(2π-α)=cosα
    tan(2π-α)=-tanα
    cot(2π-α)=-cotα
    sin(2kπ+α)=sinα
    cos(2kπ+α)=cosα
    tan(2kπ+α)=tanα
    cot(2kπ+α)=cotα(其中k∈Z)

    二倍角、三倍角的正弦、余弦和正切公式
    Sin(2α)=2sinαcosα
    Cos(2α)=(cosα)2-(sinα)2=2(cosα)2-1=1-2(sinα)2
    Tan(2α)=2tanα/(1-tanα)
    sin(3α)=3sinα-4sin3α=4sinα·sin(60°+α)sin(60°-α)
    cos(3α)=4cos3α-3cosα=4cosα·cos(60°+α)cos(60°-α)
    tan(3α)=(3tanα-tan3α)/(1-3tan2α)=tanαtan(π/3+α)tan(π/3-α)
    和差化积、积化和差公式
    sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
    sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
    cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
    cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
    sinαcosβ=-[sin(α+β)+sin(α-β)]
    sinαsinβ=-[1][cos(α+β)-cos(α-β)]/2
    cosαcosβ=[cos(α+β)+cos(α-β)]/2
    sinαcosβ=[sin(α+β)+sin(α-β)]/2
    cosαsinβ=[sin(α+β)-sin(α-β)]/2