设关于未知数x的方程x2-5x-m2+1=0的实根为α、β,试确定实数m的取值范围,使|α|+|β|≤6成立.-数学

题文

设关于未知数x的方程x2-5x-m2+1=0的实根为α、β,试确定实数m的取值范围,使|α|+|β|≤6成立.
题型:解答题  难度:中档

答案

∵△=52+4(m2-1)=4m2+21,
∴不论m取何值,
所给的方程都有两个不相等的实根.
∵α+β=5,αβ=1-m2,|α|+|β|≤6,
∴α22+2|αβ|≤36,
即(α+β)2-2αβ+2|αβ|≤36.
∴25-2(1-m2)+2|1-m2|≤36,
当1-m2≥0时,25≤36成立,
∴-1≤m≤1.(1)
当1-m2<0时,
得25-4(1-m2)≤36,
∴-

15
2
≤m≤

15
2
.(2)
由(1)、(2)得-

15
2
≤m≤

15
2

据专家权威分析,试题“设关于未知数x的方程x2-5x-m2+1=0的实根为α、β,试确定实数m的取..”主要考查你对  一元二次方程根与系数的关系,一元二次方程根的判别式  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根与系数的关系一元二次方程根的判别式

考点名称:一元二次方程根与系数的关系

  • 一元二次方程根与系数的关系:
    如果方程 的两个实数根是那么
    也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  • 一元二次方程根与系数关系的推论:
    1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
    2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
    提示:
    ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
    ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
    ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0

考点名称:一元二次方程根的判别式

  • 根的判别式:
    一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
    定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
    定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
    定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

    根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
    定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
    定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
    定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
    注意:(1)再次强调:根的判别式是指△=b2-4ac。
    (2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
    (3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
    (4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。

  • 根的判别式有以下应用:
    ①不解一元二次方程,判断根的情况。
    ②根据方程根的情况,确定待定系数的取值范围。
    ③证明字母系数方程有实数根或无实数根。
    ④应用根的判别式判断三角形的形状。
    ⑤判断当字母的值为何值时,二次三项是完全平方式。
    ⑥可以判断抛物线与直线有无公共点。
    ⑦可以判断抛物线与x轴有几个交点。
    ⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。