已知关于x的一元二次方程x2-(2m-1)x+m2-m=0.(1)证明不论m取何值时,方程总有两个不相等的实数根;(2)若m≠0,设方程的两个实数根分别为x1,x2(其中x1>x2),若y是关于m的函数,-数学

题文

已知关于x的一元二次方程x2-(2m-1)x+m2-m=0.
(1)证明不论m取何值时,方程总有两个不相等的实数根;
(2)若m≠0,设方程的两个实数根分别为x1,x2(其中x1>x2),若y是关于m的函数,且y=1-
x2
x1
,结合函数图象回答:当自变量m满足什么条件时,y≤2?
题型:解答题  难度:中档

答案

(1)由题意有△=[-(2m-1)]2-4(m2-m)=1>0.
∴不论m取何值时,方程总有两个不相等的实数根.

(2)令y=0,解关于x的一元二次方程x2-(2m-1)x+m2-m=0,
得 x=m或x=m-1.
∵x1>x2
∴x1=m,x2=m-1.
∴y=1-
x2
x1
=1-
m-1
m
=
1
m

画出y=
1
m
与y=2的图象.如图,
由图象可得,当m≥
1
2
或m<0时,y≤2.

据专家权威分析,试题“已知关于x的一元二次方程x2-(2m-1)x+m2-m=0.(1)证明不论m取何值时..”主要考查你对  一元二次方程根与系数的关系  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根与系数的关系

考点名称:一元二次方程根与系数的关系

  • 一元二次方程根与系数的关系:
    如果方程 的两个实数根是那么
    也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  • 一元二次方程根与系数关系的推论:
    1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
    2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
    提示:
    ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
    ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
    ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐