如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、B同时出发,其中任意-数学

题文

如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:
(1)经过6秒后,BP=______cm,BQ=______cm;
(2)经过几秒后,△BPQ是直角三角形?
(3)经过几秒△BPQ的面积等于10

3
cm2
题型:解答题  难度:中档

答案

(1)由题意,得
AP=6cm,BQ=12cm.
∵△ABC是等边三角形,
∴AB=BC=12cm,
∴BP=12-6=6cm.

(2)∵△ABC是等边三角形,
∴AB=BC=12cm,∠A=∠B=∠C=60°,
当∠PQB=90°时,
∴∠BPQ=30°,
∴BP=2BQ.
∵BP=12-x,BQ=2x,
∴12-x=2×2x,
∴x=
12
5

当∠QPB=90°时,
∴∠PQB=30°,
∴BQ=2PB,
∴2x=2(12-x),
x=6
答6秒或
12
5
秒时,△BPQ是直角三角形;

(3)作QD⊥AB于D,
∴∠QDB=90°,
∴∠DQB=30°,
∴DB=
1
2
BQ=x,
在Rt△DBQ中,由勾股定理,得
DQ=

3
x,
(12-x)

3
x
2
=10

3

解得;x1=10,x2=2,
∵x=10时,2x>12,故舍去
∴x=2.
答:经过2秒△BPQ的面积等于10

3
cm2
故答案为:6、12.

据专家权威分析,试题“如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B..”主要考查你对  一元二次方程的应用  等考点的理解。关于这些考点的“档案”如下:

一元二次方程的应用

考点名称:一元二次方程的应用

  • 建立一元二次方程模型进行求解,把得到的答案带回实际问题中检验是否合理,来解决实际问题,如打折、营销、增长率问题等。

  •  

  • 列一元二次次方程组解应用题的一般步骤:
    可概括为“审、设、列、解、答”五步,即:
    (1)审:是指读懂题意,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的关系;
    (2)设:是指设未知数;
    (3)列:就是列方程,这是非常重要的一步,一般先找出能够表达应用题全部含义的一个等量关系,然后列代数式表示等量关系中的各个量,就得到含有未知数的等式,即方程;
    (4)解:解这个方程,求出两个未知数的值;
    (5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案。
    提示:
    ①列方程解应用题时,要善于将普通语言化为数学语言,审题时,要特别注意关键词语,如“多、少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等。
    ②注重解法选择与验根,在具体问题中要注意恰当的选择解法,以保证解题过程简单流畅,特别注意要对方程的解进行检验,根据实际情况作出正确取舍,以保证结论的准确性。

    常见题型公式:
    工程问题:    
    工程问题中的三个量及其关系为:工作总量=工作效率×工作时间  
    经常在题目中未给出工作总量时,设工作总量为单位1。

    利润赢亏问题 
    销售问题中常出现的量有:进价、售价、标价、利润等 
    有关关系式:
    商品利润=商品售价—商品进价=商品标价×折扣率—商品进价 
    商品利润率=商品利润/商品进价            
    商品售价=商品标价×折扣率 

    存款利率问题:
    利息=本金×利率×期数      
    本息和=本金+利息      
    利息税=利息×税率(20%)

    行程问题:
    基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,
    路程=速度×时间。
    ①相遇问题:快行距+慢行距=原距;
    ②追及问题:快行距-慢行距=原距;
    ③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,
    逆水(风)速度=静水(风)速度-水流(风)速度

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐