某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图,其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800m2.(1)设矩形的边长AB=x(m)-数学

题文

某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图,其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800m2
(1)设矩形的边长AB=x(m),AM=y(m),用含x的代数式表示y为______;
(2)现计划在正方形区域上建成雕塑和花坛,平均每平方米造价为2100元,在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元,在四个三角形区域上铺设草坪,平均每平方米造价为40元.
①设该工程的总造价为s(元),求s关于x的函数关系;
②若该工程的银行贷款为235000元,问仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由;
③若该工程在银行贷款的基础上,又增加资金73000元,请问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.
题型:解答题  难度:中档

答案

(1)y=
800-x2
4x
(0<x<20

2
).

(2)①s=2100x2+105×4xy+40×4×
1
2
y2
=2100x2+420x×
800-x2
4x
+80(
200
x
-
x
4
2
=2000x2+
3200000
x2
+76000(0<x<20

2
).
②s=2000(x2+
1600
x2
-80)+76000+2000×80=2000×(x-
40
x
2+236000>235000.
∴光靠银行贷款不能完成该工程的建设任务.
③由s=235000+73000=308000,
2000x2+
3200000
x2
+76000=308000,
即x2-116+
1600
x2
=0.
设x2=t,
得t2-116t+1600=0,
得t1=100,t2=16.
当t=100时,x2=100,x1=10,x2=-10(舍去).此时y=17.5;
当t=16时,x2=16,x=±4(舍去负值),此时y=49.
故设计方案为
情形一:正方形区域边长为10m,四个相同的矩形区域的长和宽分别为17.5m和10m,四个相同的三角形区域的直角边长为17.5m.
情形二:正方形区域的边长为4m,四个相同的矩形区域的长和宽分别为49m和4m,四个相同的三角形区域的直角边长均为49m.
(设计方案不同,得出的结果就不同)

据专家权威分析,试题“某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民..”主要考查你对  一元二次方程的应用  等考点的理解。关于这些考点的“档案”如下:

一元二次方程的应用

考点名称:一元二次方程的应用

  • 建立一元二次方程模型进行求解,把得到的答案带回实际问题中检验是否合理,来解决实际问题,如打折、营销、增长率问题等。

  •  

  • 列一元二次次方程组解应用题的一般步骤:
    可概括为“审、设、列、解、答”五步,即:
    (1)审:是指读懂题意,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的关系;
    (2)设:是指设未知数;
    (3)列:就是列方程,这是非常重要的一步,一般先找出能够表达应用题全部含义的一个等量关系,然后列代数式表示等量关系中的各个量,就得到含有未知数的等式,即方程;
    (4)解:解这个方程,求出两个未知数的值;
    (5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案。
    提示:
    ①列方程解应用题时,要善于将普通语言化为数学语言,审题时,要特别注意关键词语,如“多、少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等。
    ②注重解法选择与验根,在具体问题中要注意恰当的选择解法,以保证解题过程简单流畅,特别注意要对方程的解进行检验,根据实际情况作出正确取舍,以保证结论的准确性。

    常见题型公式:
    工程问题:    
    工程问题中的三个量及其关系为:工作总量=工作效率×工作时间  
    经常在题目中未给出工作总量时,设工作总量为单位1。

    利润赢亏问题 
    销售问题中常出现的量有:进价、售价、标价、利润等 
    有关关系式:
    商品利润=商品售价—商品进价=商品标价×折扣率—商品进价 
    商品利润率=商品利润/商品进价            
    商品售价=商品标价×折扣率 

    存款利率问题:
    利息=本金×利率×期数      
    本息和=本金+利息      
    利息税=利息×税率(20%)

    行程问题:
    基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,
    路程=速度×时间。
    ①相遇问题:快行距+慢行距=原距;
    ②追及问题:快行距-慢行距=原距;
    ③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,
    逆水(风)速度=静水(风)速度-水流(风)速度

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐