已知关于x的方程x2-(2k+1)x+4(k-12)=0.(1)求证:无论k取什么实数值,这个方程总有实根.(2)若等腰△ABC的一边长a=4,另两边b、c恰好是这个方程的两根,求△ABC的周长.-数学

题文

已知关于x的方程x2-(2k+1)x+4(k-
1
2
)=0.
(1)求证:无论k取什么实数值,这个方程总有实根.
(2)若等腰△ABC的一边长a=4,另两边b、c恰好是这个方程的两根,求△ABC的周长.
题型:解答题  难度:中档

答案

(1)证明:方程化为一般形式为:x2-(2k+1)x+4k-2=0,
∵△=(2k+1)2-4(4k-2)=(2k-3)2
而(2k-3)2≥0,
∴△≥0,
所以无论k取任何实数,方程总有两个实数根;

(2)x2-(2k+1)x+4k-2=0,
整理得(x-2)[x-(2k-1)]=0,
∴x1=2,x2=2k-1,
当a=4为等腰△ABC的底边,则有b=c,
因为b、c恰是这个方程的两根,则2=2k-1,
解得k=
3
2
,则三角形的三边长分别为:2,2,4,
∵2+2=4,这不满足三角形三边的关系,舍去;
当a=4为等腰△ABC的腰,
因为b、c恰是这个方程的两根,所以只能2k-1=4,
则三角形三边长分别为:2,4,4,
此时三角形的周长为2+4+4=10.
所以△ABC的周长为10.

据专家权威分析,试题“已知关于x的方程x2-(2k+1)x+4(k-12)=0.(1)求证:无论k取什么实数值..”主要考查你对  一元二次方程根的判别式  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根的判别式

考点名称:一元二次方程根的判别式

  • 根的判别式:
    一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
    定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
    定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
    定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

    根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
    定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
    定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
    定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
    注意:(1)再次强调:根的判别式是指△=b2-4ac。
    (2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
    (3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
    (4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。

  • 根的判别式有以下应用:
    ①不解一元二次方程,判断根的情况。
    ②根据方程根的情况,确定待定系数的取值范围。
    ③证明字母系数方程有实数根或无实数根。
    ④应用根的判别式判断三角形的形状。
    ⑤判断当字母的值为何值时,二次三项是完全平方式。
    ⑥可以判断抛物线与直线有无公共点。
    ⑦可以判断抛物线与x轴有几个交点。
    ⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐