小昆和小明相约玩一种“造数”游戏.游戏规则如下:同时抛掷一枚均匀的硬币和一枚均匀的骰子,硬币的正、反面分别表示“新数”的性质符号(约定硬币正面向上记为“+”号,反面向上记为-数学

首页 > 考试 > 数学 > 初中数学 > 列举法求概率/2019-05-18 / 加入收藏 / 阅读 [打印]

题文

小昆和小明相约玩一种“造数”游戏.游戏规则如下:同时抛掷一枚均匀的硬币和一枚均匀的骰子,硬币的正、反面分别表示“新数”的性质符号(约定硬币正面向上记为“+”号,反面向上记为“-”号),与骰子投出面朝上的数字组合成一个“新数”;如抛掷结果为“硬币反面向上,骰子面朝上的数字是4”,记为“-4”.
(1)利用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;
(2)写出组合成的所有“新数”;
(3)若约定投掷一次的结果所组合成的“新数”是3的倍数,则小昆获胜;若是4或5的倍数,则小明获胜.你觉得他们的约定公平吗?为什么?
题型:解答题  难度:中档

答案

(1)列表如下:
1 2 3 4 5 6
(正,1) (正,2) (正,3) (正,4) (正,5) (正,6)
(反,1) (反,2) (反,3) (反,4) (反,5) (反,6)
(2)组合成的“新数”为1,2,3,4,5,6,-1,-2,-3,-4,-5,-6(5分)

(3)所有组合成的“新数”中,是3的倍数的数有:3,6,-3,-6,共4个
∴P(3的倍数)=
4
12
=
1
3
(6分)
是4或5的倍数的数有:4,5,-4,-5,共4个
∴P(4或5的倍数)=
4
12
=
1
3
(7分)
∵两个概率相等,∴他们的约定公平.(8分)

据专家权威分析,试题“小昆和小明相约玩一种“造数”游戏.游戏规则如下:同时抛掷一枚均匀..”主要考查你对  列举法求概率,利用概率解决问题  等考点的理解。关于这些考点的“档案”如下:

列举法求概率利用概率解决问题

考点名称:列举法求概率

  • 可能条件下概率的意义:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=
    等可能条件下概率的特征:
    (1)对于每一次试验中所有可能出现的结果都是有限的;
    (2)每一个结果出现的可能性相等。

  • 概率的计算方法:
    (1)列举法(列表或画树状图),
    (2)公式法;
    列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果。

    列表法
    (1)定义:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
    (2)列表法的应用场合
    当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

    树状图法
    (1)定义:通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
    (2)运用树状图法求概率的条件
    当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。

考点名称:利用概率解决问题

  • 应用概率可以解决以下问题:
    (1)彩票中奖率的问题;
    (2)抽样检测中产品合格率的问题;
    (3)天气预报降水的概率;
    (4)抛硬币、掷骰字的问题;
    (5)圆盘分几个区域,分别涂色,转到哪个颜色的区域的概率;
    (6)有刚回及无放回的摸球问题。
    概率的应用情况远不止于这些,还有很多类似情况,在解决这类问题时,要充分理解题意,找到切入点,就能轻松的解决问题。