有4条线段,长度分别为2cm,3cm,4cm,6cm,从中任取3条,能构成三角形的概率是______.-数学
题文
有4条线段,长度分别为2cm,3cm,4cm,6cm,从中任取3条,能构成三角形的概率是______. |
答案
首先任取三根,有2,3,4; 2,3,6; 2,4,6; 3,4,6一共有4种可能, 再根据三角形的三边关系,得其中2+3<6,2+4=6,排除2,3,6; 2,4,6, 只有2个符合. ∴能构成三角形的概率是:
故答案为:
|
据专家权威分析,试题“有4条线段,长度分别为2cm,3cm,4cm,6cm,从中任取3条,能构成..”主要考查你对 列举法求概率,三角形的三边关系 等考点的理解。关于这些考点的“档案”如下:
列举法求概率三角形的三边关系
考点名称:列举法求概率
- 可能条件下概率的意义:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=。
等可能条件下概率的特征:
(1)对于每一次试验中所有可能出现的结果都是有限的;
(2)每一个结果出现的可能性相等。 - 概率的计算方法:
(1)列举法(列表或画树状图),
(2)公式法;
列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果。
列表法
(1)定义:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
(2)列表法的应用场合
当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
树状图法
(1)定义:通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
(2)运用树状图法求概率的条件
当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
考点名称:三角形的三边关系
三角形的三边关系:
在三角形中,任意两边和大于第三边,任意两边差小于第三边。
设三角形三边为a,b,c
则
a+b>c
a+c>b
b+c>a
a-b<c
a-c<b
b-c<a
在直角三角形中,设a、b为直角边,c为斜边。
则两直角边的平方和等于斜边平方。
在等边三角形中,a=b=c
在等腰三角形中, a,b为两腰,则a=b
在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下,c2=a2+b2-2abcosc三角形的三边关系定理及推论:
(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:
①判断三条已知线段能否组成三角形;
②当已知两边时,可确定第三边的范围;
③证明线段不等关系。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |