如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(-3,0)两点,与y轴交于点D(0,3)小题1:求这个抛物线的解析式小题2:如图②,过点A的直线与抛物线交于点E,交轴于点F-八年级数学

首页 > 考试 > 数学 > 初中数学 > 二次函数的定义/2019-05-20 / 加入收藏 / 阅读 [打印]
(1)直接利用三点式求出二次函数的解析式;
(2)若四边形DFHG的周长最小,应将边长进行转换,利用对称性,要使四边形DFHG的周长最小,由于DF是一个定值,只要使DG+GH+HI最小即可,   
由图形的对称性和,可知,HF=HI,GD=GE,
DG+GH+HF=EG+GH+HI
只有当EI为一条直线时,EG+GH+HI最小,即
,DF+EI=
即边形DFHG的周长最小为.
(3)要使△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论,①当∠CMP=90°时,CM=,若,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;②当∠PCM=90°时,CM=,若,可求出P(-3,0),则PM=,显然不成立,若,更不可能成立.  即求出以P、C、M为顶点的三角形与△AOM相似的P的坐标(-4,0)

据专家权威分析,试题“如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(-3,..”主要考查你对  二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用  等考点的理解。关于这些考点的“档案”如下:

二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用

考点名称:二次函数的定义

  • 定义:
    一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
    ①所谓二次函数就是说自变量最高次数是2;
    ②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
    ③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。

  • 二次函数的解析式有三种形式:
    (1)一般式:(a,b,c是常数,a≠0);
    (2)顶点式: (a,h,k是常数,a≠0)
    (3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。

    二次函数的一般形式的结构特征:
    ①函数的关系式是整式;
    ②自变量的最高次数是2;
    ③二次项系数不等于零。

  • 二次函数的判定:
    二次函数的一般形式中等号右边是关于自变量x的二次三项式;
    当b=0,c=0时,y=ax2是特殊的二次函数;
    判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成(a≠0)的形式,那么这个函数就是二次函数,否则就不是。

考点名称:二次函数的图像

  • 二次函数的图像
    是一条关于对称的曲线,这条曲线叫抛物线。
    抛物线的主要特征:
    ①有开口方向,a表示开口方向:a>0时,抛物线开口向上;a<0时,抛物线开口向下;
    ②有对称轴;
    ③有顶点;
    ④c 表示抛物线与y轴的交点坐标:(0,c)。

  • 二次函数图像性质:

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐