如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B。已知抛物线y=x2+bx+c过点A和B,与y轴交于点C。(1)求点C的坐标;(2)点Q(8,m)在抛物线y=x2+bx+c上,点P为此抛物-九年级数学
题文
如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B。已知抛物线y=x2+bx+c过点A和B,与y轴交于点C。 |
(1)求点C的坐标; (2)点Q(8,m)在抛物线y=x2+bx+c上,点P为此抛物线对称轴上一个动点,求PQ+PB的最小值; (3)CE是过点C的⊙M的切线,点E是切点,求OE所在直线的解析式。 |
答案
解:(1)由已知,得A(2,0),B(6,0) ∵ 抛物线过点A和B,则 解得 则抛物线的解析式为: 故 C(0,2); (2)如图①,抛物线对称轴l是:x=4 ∵Q(8,m)抛物线上 ∴m=2 过点Q作QK⊥x轴于点K,则K(8,0),QK=2,AK=6 ∴AQ= 又∵B(6,0)与A(2,0)关于对称轴l对称 ∴PQ+PB的最小值=AQ= ; (3)如图②,连结EM和CM 由已知,得EM=OC=2,CE是⊙M的切线 ∴∠DEM=90o,则∠DEM=∠DOC 又∵∠ODC=∠EDM 故△DEM≌△DOC ∴OD=DE,CD=MD 又在△ODE和△MDC中,∠ODE=∠MDC,∠DOE=∠DEO=∠DCM=∠DMC 则OE∥CM 设CM所在直线的解析式为y=kx+b,CM过点C(0,2),M(4,0) ∴解得 直线CM的解析式为 又∵直线OE过原点O,且OE∥CM 则OE的解析式为y=x。 |
据专家权威分析,试题“如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B。已..”主要考查你对 二次函数的图像,求一次函数的解析式及一次函数的应用,二次函数的最大值和最小值,勾股定理 等考点的理解。关于这些考点的“档案”如下:
二次函数的图像求一次函数的解析式及一次函数的应用二次函数的最大值和最小值勾股定理
考点名称:二次函数的图像
- 二次函数的图像
是一条关于对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:
①有开口方向,a表示开口方向:a>0时,抛物线开口向上;a<0时,抛物线开口向下;
②有对称轴;
③有顶点;
④c 表示抛物线与y轴的交点坐标:(0,c)。 二次函数图像性质:
轴对称:
二次函数图像是轴对称图形。对称轴为直线x=-b/2a
对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。
a,b同号,对称轴在y轴左侧
b=0,对称轴是y轴
a,b异号,对称轴在y轴右侧
顶点:
二次函数图像有一个顶点P,坐标为P ( h,k )
当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。
h=-b/2a, k=(4ac-b^2)/4a。
开口:
二次项系数a决定二次函数图像的开口方向和大小。
当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。
|a|越大,则二次函数图像的开口越小。- 决定对称轴位置的因素:
一次项系数b和二次项系数a共同决定对称轴的位置。
当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。
事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
决定与y轴交点的因素:
常数项c决定二次函数图像与y轴交点。
二次函数图像与y轴交于(0,C)
注意:顶点坐标为(h,k), 与y轴交于(0,C)。
与x轴交点个数:
a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。
k=0时,二次函数图像与x轴只有1个交点。
a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。
当a>0时,函数在x=h处取得最小值ymin=k,在x<h范围内是减函数,在x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k
当a<0时,函数在x=h处取得最大值ymax=k,在x<h范围内是增函数,在x>h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y<k
当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。
考点名称:求一次函数的解析式及一次函数的应用
- 待定系数法求一次函数的解析式:
先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。
一次函数的应用:
应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |