如图,抛物线y=x2-2x+c的顶点A在直线l:y=x-5上。(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否-九年级数学
题文
如图,抛物线y=x2-2x+c的顶点A在直线l:y=x-5上。 |
答案
解:(1)∵顶点A的横坐标为x==1,且顶点A在y=x-5上, ∴当x=1时,y=1-5=-4, ∴A(1,-4); (2)△ABD是直角三角形, 将A(1,-4)代入y=x2-2x+c,可得,1-2+c=-4,∴c=-3, ∴y=x2-2x-3,∴B(0,-3) 当y=0时,x2-2x-3=0,x1=-1,x2=3 ∴C(-1,0),D(3,0), BD2=OB2+OD2=18,AB2=(4-3)2+12=2,AD2=(3-1)2+42=20,BD2+AB2=AD2, ∴∠ABD=90°, 即△ABD是直角三角形; (3)存在. 由题意知:直线y=x-5交y轴于点A(0,-5),交x轴于点F(5,0) ∴OE=OF=5,又∵OB=OD=3 ∴△OEF与△OBD都是等腰直角三角形 ∴BD∥l, 即PA∥BD则构成平行四边形只能是PADB或PABD, 如图,过点P作y轴的垂线,过点A作x轴的垂线并交于点C设P(x1,x1-5), 则G(1,x1-5) 则PC=|1﹣x1|,AG=|5﹣x1﹣4|=|1﹣x1|PA=BD=3 由勾股定理得:(1-x1)2+(1-x1)2=18, x12-2x1-8=0,x1=-2,4 ∴P(-2,-7),P(4,-1) 存在点P(-2,-7)或P(4,-1)使以点A、B、D、P为顶点的四边形是平行四边形。 |
据专家权威分析,试题“如图,抛物线y=x2-2x+c的顶点A在直线l:y=x-5上。(1)求抛物线顶点..”主要考查你对 二次函数的图像,勾股定理的逆定理,平行四边形的判定 等考点的理解。关于这些考点的“档案”如下:
二次函数的图像勾股定理的逆定理平行四边形的判定
考点名称:二次函数的图像
- 二次函数的图像
是一条关于对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:
①有开口方向,a表示开口方向:a>0时,抛物线开口向上;a<0时,抛物线开口向下;
②有对称轴;
③有顶点;
④c 表示抛物线与y轴的交点坐标:(0,c)。 二次函数图像性质:
轴对称:
二次函数图像是轴对称图形。对称轴为直线x=-b/2a
对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。
a,b同号,对称轴在y轴左侧
b=0,对称轴是y轴
a,b异号,对称轴在y轴右侧
顶点:
二次函数图像有一个顶点P,坐标为P ( h,k )
当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。
h=-b/2a, k=(4ac-b^2)/4a。
开口:
二次项系数a决定二次函数图像的开口方向和大小。
当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。
|a|越大,则二次函数图像的开口越小。- 决定对称轴位置的因素:
一次项系数b和二次项系数a共同决定对称轴的位置。
当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。
事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
决定与y轴交点的因素:
常数项c决定二次函数图像与y轴交点。
二次函数图像与y轴交于(0,C)
注意:顶点坐标为(h,k), 与y轴交于(0,C)。
与x轴交点个数:
a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。
k=0时,二次函数图像与x轴只有1个交点。
a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。
当a>0时,函数在x=h处取得最小值ymin=k,在x<h范围内是减函数,在x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k
当a<0时,函数在x=h处取得最大值ymax=k,在x<h范围内是增函数,在x>h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y<k
当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。
考点名称:勾股定理的逆定理
勾股定理的逆定理:
如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形。
勾股定理的逆定理是判断三角形为锐角或钝角的一个简单的方法。
若c为最长边,且a2+b2=c2,则△ABC是直角三角形。如果a2+b2>c2,则△ABC是锐角三角形。如果a2+b2<c2,则△ABC是钝角三角形。
由于余弦定理是由勾股定理推出的,故可以用来证明其逆定理而不算循环论证。
勾股定理的逆定理是判定三角形是不是直角三角形的重要方法。- 勾股定理的来源:
毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。
毕达哥拉斯在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |