若A(-134,y1),B(-1,y2),C(53,y3)为二次函数y=-x2-4x+5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3-数学

首页 > 考试 > 数学 > 初中数学 > 二次函数的图像/2019-05-20 / 加入收藏 / 阅读 [打印]

题文

若A(-
13
4
,y1),B(-1,y2),C(
5
3
,y3)为二次函数y=-x2-4x+5的图象上的三点,则y1,y2,y3的大小关系是(  )
A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3
题型:单选题  难度:中档

答案

∵二次函数y=-x2-4x+5中a=-1<0
∴抛物线开口向下,对称轴为x=-
b
2a
=-
-4
(-1)×2
=-2
∵B(-1,y2),C(
5
3
,y3)中横坐标均大于-2
∴它们在对称轴的右侧y3<y2,A(-
13
4
,y1)中横坐标小于-2,
∵它在对称轴的左侧,它关于x=-2的对称点为2×(-2)-(-
13
4
)=-
3
8
5
3
>-
3
8
>-1
∵a<0时,抛物线开口向下,在对称轴的右侧y随x的增大而减小
∴y3<y1<y2
故选C.

据专家权威分析,试题“若A(-134,y1),B(-1,y2),C(53,y3)为二次函数y=-x2-4x+5的图象..”主要考查你对  二次函数的图像  等考点的理解。关于这些考点的“档案”如下:

二次函数的图像

考点名称:二次函数的图像

  • 二次函数的图像
    是一条关于对称的曲线,这条曲线叫抛物线。
    抛物线的主要特征:
    ①有开口方向,a表示开口方向:a>0时,抛物线开口向上;a<0时,抛物线开口向下;
    ②有对称轴;
    ③有顶点;
    ④c 表示抛物线与y轴的交点坐标:(0,c)。

  • 二次函数图像性质:
    轴对称:

    二次函数图像是轴对称图形。对称轴为直线x=-b/2a
    对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
    特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。
    a,b同号,对称轴在y轴左侧
    b=0,对称轴是y轴
    a,b异号,对称轴在y轴右侧

    顶点:
    二次函数图像有一个顶点P,坐标为P ( h,k )
    当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。
    h=-b/2a, k=(4ac-b^2)/4a。

    开口:
    二次项系数a决定二次函数图像的开口方向和大小。
    当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。
    |a|越大,则二次函数图像的开口越小。

  • 决定对称轴位置的因素:
    一次项系数b和二次项系数a共同决定对称轴的位置。
    当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
    当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
    可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。
    事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

    决定与y轴交点的因素:

    常数项c决定二次函数图像与y轴交点。
    二次函数图像与y轴交于(0,C)
    注意:顶点坐标为(h,k), 与y轴交于(0,C)。

    与x轴交点个数:
    a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。
    k=0时,二次函数图像与x轴只有1个交点。
    a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。
    当a>0时,函数在x=h处取得最小值ymin=k,在x<h范围内是减函数,在x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐