已知α是锐角,且点A(12,a),B(sinα+cosα,b),C(-m2+2m-2,c)都在二次函数y=-x2+x+3的图象上,那么a、b、c的大小关系是()A.a<b<cB.a<c<bC.b<c<aD.c<b<a-数学

首页 > 考试 > 数学 > 初中数学 > 二次函数的图像/2019-05-20 / 加入收藏 / 阅读 [打印]

题文

已知α是锐角,且点A(
1
2
,a),B(sinα+cosα,b),C(-m2+2m-2,c)都在二次函数y=-x2+x+3的图象上,那么a、b、c的大小关系是(  )
A.a<b<cB.a<c<bC.b<c<aD.c<b<a
题型:单选题  难度:中档

答案

抛物线y=-x2+x+3的对称轴是直线x=
1
2
,开口向下,
点A(
1
2
,a)为顶点,即最高点,
所以,a最大,A、B错误;
又1<sinα+cosα<2,-m2+2m-2=-(m-1)2-1≤-1,
可知,B点离对称轴近,C点离对称轴远,
由于抛物线开口向下,
离对称轴越远,函数值越小,c<b,C错误;
故选D.

据专家权威分析,试题“已知α是锐角,且点A(12,a),B(sinα+cosα,b),C(-m2+2m-2,c)都..”主要考查你对  二次函数的图像,锐角三角函数的定义  等考点的理解。关于这些考点的“档案”如下:

二次函数的图像锐角三角函数的定义

考点名称:二次函数的图像

  • 二次函数的图像
    是一条关于对称的曲线,这条曲线叫抛物线。
    抛物线的主要特征:
    ①有开口方向,a表示开口方向:a>0时,抛物线开口向上;a<0时,抛物线开口向下;
    ②有对称轴;
    ③有顶点;
    ④c 表示抛物线与y轴的交点坐标:(0,c)。

  • 二次函数图像性质:
    轴对称:

    二次函数图像是轴对称图形。对称轴为直线x=-b/2a
    对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
    特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。
    a,b同号,对称轴在y轴左侧
    b=0,对称轴是y轴
    a,b异号,对称轴在y轴右侧

    顶点:
    二次函数图像有一个顶点P,坐标为P ( h,k )
    当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。
    h=-b/2a, k=(4ac-b^2)/4a。

    开口:
    二次项系数a决定二次函数图像的开口方向和大小。
    当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。
    |a|越大,则二次函数图像的开口越小。

  • 决定对称轴位置的因素:
    一次项系数b和二次项系数a共同决定对称轴的位置。
    当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
    当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
    可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。
    事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

    决定与y轴交点的因素:

    常数项c决定二次函数图像与y轴交点。
    二次函数图像与y轴交于(0,C)
    注意:顶点坐标为(h,k), 与y轴交于(0,C)。

    与x轴交点个数:
    a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。
    k=0时,二次函数图像与x轴只有1个交点。
    a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。
    当a>0时,函数在x=h处取得最小值ymin=k,在x<h范围内是减函数,在x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k
    当a<0时,函数在x=h处取得最大值ymax=k,在x<h范围内是增函数,在x>h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y<k
    当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。

考点名称:锐角三角函数的定义

  • 锐角三角函数
    锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
    初中学习的 锐角三角函数值的定义方法是在直角三角形中定义的,所以在初中阶段求锐角的三角函数值,都是通过构造直角三角形来完成的,即把这个角放到某个直角三角形中。所谓锐角三角函数是指:我们初中研究的都是锐角的三角函数。初中研究的锐角的三角函数为:正弦(sin),余弦(cos),正切(tan)。
    正弦:在直角三角形中,锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即
    余弦:在直角三角形中,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即
    正切:在直角三角形中,锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即
    锐角A的正弦、余弦、正切都叫做A的锐角三角函数。

  • 锐角三角函数的增减性:
    1.锐角三角函数值都是正值
    2.当角度在0°~90°间变化时,
    正弦值随着角度的增大(或减小)而增大(或减小) ,余弦值随着角度的增大(或减小)而减小(或增大) ;
    正切值随着角度的增大(或减小)而增大(或减小) ,余切值随着角度的增大(或减小)而减小(或增大);
    正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。
    3.当角度在0°≤A≤90°间变化时,0≤sinA≤1, 1≥cosA≥0;当角度在0°<A0, cotA>0。

  • 锐角三角函数的关系式:
    同角三角函数基本关系式
    tanα·cotα=1
    sin2α·cos2α=1
    cos2α·sin2α=1
    sinα/cosα=tanα=secα/cscα
    cosα/sinα=cotα=cscα/secα
    (sinα)2+(cosα)2=1

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐