二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①2a+b>0;②b>a>c;③若-1<m<n<1,则m+n<-ba;④3|a|+|c|<2|b|.其中正确的结论是______(写出你认为正确的所有结论序号).-数学

首页 > 考试 > 数学 > 初中数学 > 二次函数的图像/2019-05-20 / 加入收藏 / 阅读 [打印]

题文

二次函数y=ax2+bx+c的图象如图所示,给出下列结论:
①2a+b>0;②b>a>c;③若-1<m<n<1,则m+n<-
b
a
;④3|a|+|c|<2|b|.
其中正确的结论是______(写出你认为正确的所有结论序号).
题型:填空题  难度:中档

答案

∵抛物线开口向下,∴a<0,∴2a<0,
对称轴x=-
b
2a
>1,-b<2a,∴2a+b>0,故选项①正确;
∵-b<2a,∴b>-2a>0>a,
令抛物线解析式为y=-
1
2
x2+bx-
1
2

此时a=c,欲使抛物线与x轴交点的横坐标分别为
1
2
和2,
1
2
+2
2
=-
b
2×(-
1
2
)

解得:b=
5
4

∴抛物线y=-
1
2
x2+
5
4
x-
1
2
,符合“开口向下,与x轴的一个交点的横坐标在0与1之间,
对称轴在直线x=1右侧”的特点,而此时a=c,(其实a>c,a<c,a=c都有可能),
故②选项错误;
∵-1<m<n<1,-2<m+n<2,
∴抛物线对称轴为:x=-
b
2a
>1,
-b
a
>2,m+n<
-b
a
,故选项③正确;
当x=1时,a+b+c>0,2a+b>0,3a+2b+c>0,
∴3a+c>-2b,∴-3a-c<2b,
∵a<0,b>0,c<0(图象与y轴交于负半轴),
∴3|a|+|c|=-3a-c<2b=2|b|,故④选项正确.
故答案为:①③④.

据专家权威分析,试题“二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①2a+b>0;②b>a..”主要考查你对  二次函数的图像  等考点的理解。关于这些考点的“档案”如下:

二次函数的图像

考点名称:二次函数的图像

  • 二次函数的图像
    是一条关于对称的曲线,这条曲线叫抛物线。
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐