已知两个二次函数y1,y2,当x=m(m<0)时,y1取最小值6,y2=7;又y2的最小值-5.5;y1+y2=x2-3x+9.(1)求m的值;(2)求二次函数y1,y2的表达式.-数学

题文

已知两个二次函数y1,y2,当x=m(m<0)时,y1取最小值6,y2=7;又y2的最小值-5.5;y1+y2=x2-3x+9.
(1)求m的值;
(2)求二次函数y1,y2的表达式.
题型:解答题  难度:中档

答案

(1)由y1+y2=x2-3x+9可知,
6+7=m2-3m+9,
解得:m1=-1,m2=4,
∵m<0,
所以m=-1,

(2)设y1=b(x+1)2+6;
    y2=c(x-a)2-5.5;
    于是,y1+y2=b(x+1)2+6+c(x-a)2-5.5,
    即x2-3x+9=b(x+1)2+6+c(x-a)2-5.5=(b+c)x2+(2b-2ca)x+(b+ca2+0.5),
    由二次项系数相等得:c+b=1,
    即c=1-b,①
    由一次项系数相等得:-3=2b-2ca②,
    由常数项相等得:9=b+ca2+0.5 ③,
    由第(1)问,x=-1时,y2=7,即c(-1-a)2-5.5=7 ④
    联立以上四个方程(具体过程略,可先把c=b-1代入后面三个方程,再消去b),
    解得:c=
1
2
,b=
1
2
,a=4,
∴y1=
1
2
(x+1)2+6;y2=
1
2
(x-4)2-5.5.

据专家权威分析,试题“已知两个二次函数y1,y2,当x=m(m<0)时,y1取最小值6,y2=7;又y..”主要考查你对  二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用  等考点的理解。关于这些考点的“档案”如下:

二次函数的最大值和最小值求二次函数的解析式及二次函数的应用

考点名称:二次函数的最大值和最小值

  • 二次函数的最值:
    1.如果自变量的取值范围是全体实数,则当a>0时,抛物线开口向上,有最低点,那么函数在处取得最小值y最小值=
    当a<0时,抛物线开口向下,有最高点,即当时,函数取得最大值,y最大值=
    也即是:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,
    2.如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2 时,,当x=x1;如果在此范围内,y随x的增大而减小,则当x=x1时,,当x=x2 。

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐