如图所示,已知A,B两点的坐标分别为(28,0)和(0,28).动点P从A点开始在线段AO上以每秒3个单位的速度向原点O运动,动直线EF从x轴开始每秒1个单位的速度向上平行移动(即EF∥x轴-数学

题文

如图所示,已知A,B两点的坐标分别为(28,0)和(0,28).动点P从A点开始在线段AO上以每秒3个单位的速度向原点O运动,动直线EF从x轴开始每秒1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴,线段AB交于E,F点,连接FP,设动点P与动直线EF同时出发,运动时间为t秒.
(1)当t=1秒时,求梯形OPFE的面积,当t为何值时,梯形OPFE的面积最大,最大面积是多少?
(2)当梯形OPFE的面积等于三角形APF的面积时,求线段PF的长;
(3)设t的值分别取t1,t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断.
题型:解答题  难度:中档

答案

(1)S梯形OPFE=
1
2
(OP+EF)?OE=
1
2
(25+27)×1=26.
设运动时间为t秒时,梯形OPFE的面积为y,
则y=
1
2
(28-3t+28-t)t=-2t2+28t=-2(t-7)2+98,
所以当t=7秒时,梯形OPFE的面积最大,最大面积为98;

(2)当S梯形OPFE=S△APF时,
-2t2+28t=
3t2
2
,解得t1=8,t2=0(舍去).
当t=8秒时,FP=8

5


(3)由
AP1
AP2
AF1
AF2
t1
t2

且∠OAB=∠OAB,
可证得△AF1P1∽△AF2P2

据专家权威分析,试题“如图所示,已知A,B两点的坐标分别为(28,0)和(0,28).动点P从A点..”主要考查你对  二次函数的最大值和最小值  等考点的理解。关于这些考点的“档案”如下:

二次函数的最大值和最小值

考点名称:二次函数的最大值和最小值

  • 二次函数的最值:
    1.如果自变量的取值范围是全体实数,则当a>0时,抛物线开口向上,有最低点,那么函数在处取得最小值y最小值=
    当a<0时,抛物线开口向下,有最高点,即当时,函数取得最大值,y最大值=
    也即是:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,
    2.如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2 时,,当x=x
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐