下列运算正确的是()A.a(2a+b)=2ab+bB.x6÷x2=x4C.(a+b)2=a2+b2D.53÷53=5-数学
题文
下列运算正确的是( )
|
答案
B |
据专家权威分析,试题“下列运算正确的是()A.a(2a+b)=2ab+bB.x6÷x2=x4C.(a+b)2=a2+b2D.5..”主要考查你对 有理数除法,单项式,完全平方公式 等考点的理解。关于这些考点的“档案”如下:
有理数除法单项式完全平方公式
考点名称:有理数除法
- 有理数除法定义:
已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。 有理数的除法法则:
(1)除以一个数,等于乘上这个数的倒数;
(2)两个数相除,同号得正,异号得负,并把绝对值相除;
(3)0除以任何一个不等于0的数都等于0。- 有理数除法注意:
①0不能做除数;
②有理数的除法和乘法是互逆运算;
③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。
考点名称:单项式
- 单项式:
表示数或字母的积的式子叫做单项式。
单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。任何一个非零数的零次方等于1。 单项式性质:
1.分母含有字母的式子不属于单项式。因为单项式属于整式,而分母含有未知数的式子是分式。例如:1/x不是单项式。
分母中不含字母(单项式是整式,而不是分式)
a,-5,X,2XY,都是单项式,而0.5m+n,不是单项式。
2.单独的一个数字或字母也是单项式。例如:1和x2y也是单项式。
3.任意一个字母和数字的积的形式的代数式(除法中有:除以一个数等于乘这个数的倒数)。
4.如果一个单项式,只含有字母因数,如果是正数的单项式系数为1,如果是负数的单项式系数为-1。
5.如果一个单项式,只含有数字因数,那么它的次数为0。
6.0也是数字,也属于单项式。
7.有分数也属于单项式。
单项式的次数与系数:
1.单项式是字母与数的乘积。
单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
单项式的系数:单项式中的数字因数。
单项式是几次,就叫做几次单项式。
如:2xy的系数是2;-5zy 的系数是-5
字母t的指数是1,100t是一次单项式;
在单项式vt中,字母v与t的指数的和是2,vt是二次单项式。
如:xy ,3,a z,ab,b ...... 都是单项式。
单项式书写规则:
1.单项式表示数与字母相乘时,通常把数写在前面;
2.乘号可以省略为点或不写;
3.除法的式子可以写成分数式;
4.带分数与字母相乘,带分数要化为假分数
5.π是常数,因此也可以作为系数。(“π”是特指的数,不是字母,读pài。)
6.当一个单项式的系数是1或-1时,“1”通常省略不写,如[(-1)ab ]写成[ -ab ]等。
7.在单项式中字母不可以做分母,分子可以。字母不能在分母中(因为这样为分式,不为单项式)
8.单独的数“0”的系数是零,次数也是零。
9.常数的系数是它本身,次数为零。单项式的运算法则:
加减法则
单项式加减即合并同类项,也就是合并前各同类项系数的和,字母不变。
例如:3a+4a=7a,9a-2a=7a等。
同时还要运用到去括号法则和添括号法则。
乘法法则
单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式
例如:3a·4a=12a^2
除法法则
同底数幂相除,底数不变,指数相减。
例如:9a10÷3a5=3a5
考点名称:完全平方公式
- 完全平方公式:
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
(a+b)2=a2+2ab+b2,
(a-b)2=a2-2ab+b2。
(1)公式中的a、b可以是单项式,也就可以是多项式。
(2)不能直接应用公式的,要善于转化变形,运用公式。
该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。该知识点重点是对完全平方公式的熟记及应用。难点是对公式特征的理解(如对公式中积的一次项系数的理解)。 结构特征:
1.左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;
2.左边两项符号相同时,右边各项全用“+”号连接;
左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);
3..公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.
记忆口诀:首平方,尾平方,2倍首尾。使用误解:
①漏下了一次项;
②混淆公式;
③运算结果中符号错误;
④变式应用难于掌握。注意事项:
1、左边是一个二项式的完全平方。
2、右边是二项平方和,加上(或减去)这两项乘积的二倍,a和b可是数,单项式,多项式。
3、不论是还是,最后一项都是加号,不要因为前面的符号而理所当然的以为下一个符号。完全平方公式的基本变形:
(一)、变符号
例:运用完全平方公式计算:
(1)(-4x+3y)2
(2)(-a-b)2
分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。
解答:
(1)16x2-24xy+9y2
(2)a2+2ab+b2(二)、变项数:
例:计算:(3a+2b+c)2
分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。所以在运用公式时,(3a+2b+c)2可先变形为[(3a+2b)+c]2,直接套用公式计算。
解答:9a2+12ab+6ac+4b2+4bc+c2(三)、变结构
例:运用公式计算:
(1)(x+y)(2x+2y)
(2)(a+b)(-a-b)
(3)(a-b)(b-a)
分析;本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了,即
(1)(x+y)(2x+2y)=2(x+y)2
(2) (a+b)(-a-b)=-(a+b)2
(3) (a-b)(b-a)=-(a-b)2
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |