五个整数a、b、c、d、e,它们两两相加的和按从小到大顺序排分别是183,186,187,190,191,192,193,194,196,x.已知a<b<c<d<e,x>196.(1)求a、b、c、d、e和x的值;(2)若-数学

首页 > 考试 > 数学 > 初中数学 > 有理数除法/2019-02-16 / 加入收藏 / 阅读 [打印]

题文

五个整数a、b、c、d、e,它们两两相加的和按从小到大顺序排分别是183,186,187,190,191,192,193,194,196,x.已知a<b<c<d<e,x>196.
(1)求a、b、c、d、e和x的值;
(2)若y=10x+4,求y的值.
题型:解答题  难度:中档

答案

由题知:a+b=183,a+c=186,d+e=x,c+e=196,
又∵a+b、a+c、a+d、a+e、b+c、b+d、b+e、c+d、c+e分别对应着183、186、187、190、191、192、193、194、196中的某一个数,这些数之和为1712,即4(a+b)+4c+3d+3e=1712,
∴4×183+4c+3x=1712,
∴x=
980-4c
3

∵x>196,
∴c<98,
∵a+c=186,
∴a>88,
∵这些数都是整数,由整数性质可知a≥89,b≥90,c≥91且c≤97,
∴C只能在97、96、95、94、93、92、91中取值,
又∵3x=980-4c=4(245-c)为整数,
∴245-c能被3整除,而上述7个数中只有92、95满足,
若c=92,
∵a+c=186,
∴a=94不满足a<c,舍去;
∴c=95,故a=91,x=200,
∵a+b=183,c+e=196,
∴b=92,e=101,
∵d+e=x=200,
∴d=99,
综上可得:a=91、b=92、c=95、d=99、e=101、x=200.
(2)y=10x+4=10×200+4=2004.

据专家权威分析,试题“五个整数a、b、c、d、e,它们两两相加的和按从小到大顺序排分别是..”主要考查你对  有理数除法  等考点的理解。关于这些考点的“档案”如下:

有理数除法

考点名称:有理数除法

  • 有理数除法定义:
    已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。

  • 有理数的除法法则:
    (1)除以一个数,等于乘上这个数的倒数;
    (2)两个数相除,同号得正,异号得负,并把绝对值相除;
    (3)0除以任何一个不等于0的数都等于0。

  • 有理数除法注意:
    ①0不能做除数;
    ②有理数的除法和乘法是互逆运算;
    ③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐