设n是正整数,d1<d2<d3<d4是n的四个最小的正整数约数,若n=d12+d22+d32+d42,求n的值.-数学
题文
设n是正整数,d1<d2<d3<d4是n的四个最小的正整数约数,若n=d12+d22+d32+d42,求n的值. |
答案
若n为奇数,则d1,d2,d3,d4全为奇数,则d12+d22+d32+d42为偶数,与n为奇数矛盾, 故n为偶数,故d1=1.d2=2. 若n为4的倍数,则d3,d4必有一个为4,而n为偶数, 则另一个为奇数,d12+d22+d32+d42除以4的余数为2与题意不符,故n不是4的倍数. 设d3=a(a为奇数),则d必为偶数,故d4=2a. 则n=12+22+a2+(2a)2=5(a2+1),可见n是5的倍数, 故d3=5,d4=10,n=130. 故n的值为130. |
据专家权威分析,试题“设n是正整数,d1<d2<d3<d4是n的四个最小的正整数约数,若n=d12+d..”主要考查你对 有理数除法 等考点的理解。关于这些考点的“档案”如下:
有理数除法
考点名称:有理数除法
- 有理数除法定义:
已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。 有理数的除法法则:
(1)除以一个数,等于乘上这个数的倒数;
(2)两个数相除,同号得正,异号得负,并把绝对值相除;
(3)0除以任何一个不等于0的数都等于0。- 有理数除法注意:
①0不能做除数;
②有理数的除法和乘法是互逆运算;
③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |