若正整数n恰好有4个正约数,则称n为奇异数,例如6、8、10都是奇异数,那么在27、42、69、111、125、137、343、899、3599、7999这10个正整数中奇异数有______个.-数学

首页 > 考试 > 数学 > 初中数学 > 有理数除法/2019-02-16 / 加入收藏 / 阅读 [打印]

题文

若正整数n恰好有4个正约数,则称n为奇异数,例如6、8、10都是奇异数,那么在27、42、69、111、125、137、343、899、3599、7999这10个正整数中奇异数有______个.
题型:填空题  难度:中档

答案

易得奇异数有两类:第一类是质数的立方p3(p是质数),第二类是两个不同质数的乘积p1p2(p1,p2为不同的质数).
∴27=3×3×3=33,是奇异数(第一类);
42=2×3×7不是奇异数;
69=3×23是奇异数(第二类),
111=3×37是奇异数(第二类),
125=53是奇异数(第一类),
137是质数,不是奇异数,
343=73是奇异数(第一类),
899=900-1=(30-1)(30+1)=29×31是奇异数(第二类),
3599=3600-1=(60-1)(60+1)=59×61是奇异数(第二类),
7999=8000-1=203-1=(20-1)(202+20+1)=19×421是奇异数(第二类).
因此符合条件的奇异数有:27,69,111,125,343,899,3599,7999共8个.
故答案为:8.

据专家权威分析,试题“若正整数n恰好有4个正约数,则称n为奇异数,例如6、8、10都是奇异..”主要考查你对  有理数除法  等考点的理解。关于这些考点的“档案”如下:

有理数除法

考点名称:有理数除法

  • 有理数除法定义:
    已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。

  • 有理数的除法法则:
    (1)除以一个数,等于乘上这个数的倒数;
    (2)两个数相除,同号得正,异号得负,并把绝对值相除;
    (3)0除以任何一个不等于0的数都等于0。

  • 有理数除法注意:
    ①0不能做除数;
    ②有理数的除法和乘法是互逆运算;
    ③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。