求所有的正整数对(a,b),使得ab2+b+7整除a2b+a+b.-数学

首页 > 考试 > 数学 > 初中数学 > 有理数除法/2019-02-16 / 加入收藏 / 阅读 [打印]

题文

求所有的正整数对(a,b),使得ab2+b+7整除a2b+a+b.
题型:解答题  难度:中档

答案

由条件ab2+b+7整除a2b+a+b,
显然ab2+b+7|a2b2+ab+b2
而a2b2+ab+b2=a(ab2+b+7)+b2-7a,故ab2+b+7|b2-7a,
下面分三种情况讨论;
情形一:b2-7a>0;这时b2-7a<b2<ab2+b+7,矛盾;
情形二:b2=7a,此时a,b应具有a=7k2,b=7k,k是正整数的形式,显然(a,b)=(7k2,7k)满足条件;
情形二:b2-7a<0,这时由7a-b2≥ab2+b+7,则b2<7,
进而b=1或2,当b=1时,则条件
a2+a+1
a+8
=a-7+
57
a+8
为正整数,
57能被a+8整除,可知a+8=19或57,进而知a=11或49,
解得(a,b)=(11,1)或(49,1);
当b=2时,由
7a-4
4a+9
(<2)为正整数,可知
7a-4
4a+9
=1,此时a=
13
3
,矛盾;
综上,所有解为(a,b)=(11,1),(49,1)或(7k2,7k)(k是正整数).

据专家权威分析,试题“求所有的正整数对(a,b),使得ab2+b+7整除a2b+a+b.-数学-”主要考查你对  有理数除法  等考点的理解。关于这些考点的“档案”如下:

有理数除法

考点名称:有理数除法

  • 有理数除法定义:
    已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。

  • 有理数的除法法则:
    (1)除以一个数,等于乘上这个数的倒数;
    (2)两个数相除,同号得正,异号得负,并把绝对值相除;
    (3)0除以任何一个不等于0的数都等于0。

  • 有理数除法注意:
    ①0不能做除数;
    ②有理数的除法和乘法是互逆运算;
    ③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐