若两个正整数a、b的最大公约数比最小公倍数小23,且a≤b,则这样的数对(a,b)共有______个.-数学
题文
若两个正整数a、b的最大公约数比最小公倍数小23,且a≤b,则这样的数对(a,b)共有 ______个. |
答案
设a=mc,b=nc(m,n,c是正整数,且m,n互质), 则mnc-c=23,即c=
当mn=24时,则有这样的数对(3,8)(24,1); 当mn=2时,则有这样的数对(2,1); 经讨论可得有这样的数对3个. 故答案为:3. |
据专家权威分析,试题“若两个正整数a、b的最大公约数比最小公倍数小23,且a≤b,则这样的..”主要考查你对 有理数除法 等考点的理解。关于这些考点的“档案”如下:
有理数除法
考点名称:有理数除法
- 有理数除法定义:
已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。 有理数的除法法则:
(1)除以一个数,等于乘上这个数的倒数;
(2)两个数相除,同号得正,异号得负,并把绝对值相除;
(3)0除以任何一个不等于0的数都等于0。- 有理数除法注意:
①0不能做除数;
②有理数的除法和乘法是互逆运算;
③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:已知1999个自然数a1,a2,…,a1999满足条件:其中任意两数的和能被它们的差整除.现设n=a1a2…a1999,证明:n,n+a1,n+a2,…,n+a1999这2000个数仍满足上述条件.-数学
下一篇:已知n为大于100的自然数,若n3+100能被n+10整除,则满足条件的n的个数为______.-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |